
Interaction Design in
Service Compositions

Teduh Dirgahayu

ISBN: 978-90-8891-188-0

Interaction D
esign in Service C

om
positions�

Teduh D
irgahayu

Interaction Design in
Service Compositions

Teduh Dirgahayu

Enschede, The Netherlands, 2010

CTIT Ph.D. Thesis Series, No. 10-172
SIKS Dissertation Series, No. 2010-34

Graduation committee:
Chairman, secretary: prof.dr.ir. A.J. Mouthaan (University of Twente)
Promotor: prof.dr.ir. C.A. Vissers (University of Twente)
Assistant Promotor: dr.ir. M.J. van Sinderen (University of Twente)
 dr.ir. D.A.C. Quartel (Novay)
Members: prof.dr. C. Atkinson (University of Mannheim)
 prof.dr. P.F. Linington (University of Kent)
 prof.dr.ir. R.J. Wieringa (University of Twente)
 prof.dr. J. van Hillegersberg (University of Twente)

CTIT Ph.D.-Thesis Series, No. 10-172
Centre for Telematics and Information Technology, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

SIKS Dissertation Series, No. 2010-34
The research reported in this thesis has been carried out under the auspices of SIKS, the Dutch Research
School for Information and Knowledge Systems.

ISBN 978-90-8891-188-0
ISSN 1381-3617 (CTIT Ph.D.-Thesis Series, No. 10-172)

Copyright © 2010, Teduh Dirgahayu

All rights reserved. Subject to exceptions provided for by law, no part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright
owner. No part of this publication may be adapted in whole or in part without the prior written
permission of the author.

Published by Uitgeverij BOXPress, Oisterwijk
Printed by Proefschriftmaken.nl || Printyourthesis.com

Cover photo “Conversation between Kresna and Arjuna” by Teduh Dirgahayu

INTERACTION DESIGN
 IN SERVICE COMPOSITIONS

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof.dr. H. Brinksma,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag 10 september 2010 om 13.15 uur

door
Teduh Dirgahayu

geboren op 22 juni 1974
te Yogyakarta, Indonesië

Dit proefschrift is goedgekeurd door:
prof.dr.ir. C.A. Vissers (promotor), dr.ir. M.J. van Sinderen (assistent-promotor) en
dr.ir. D.A.C. Quartel (assistent-promotor)

Abstract

This thesis proposes a concept and transformations for designing
interactions in a service composition at related abstraction levels. The
concept and transformations are aimed at helping designers to bridge the
conceptual gap between the business and software domains. In this way, the
complexity of an interaction design can be managed adequately.

A service composition is specified as one or more interactions between
application components. Interaction design is therefore the central activity
in the design of a service composition. Interaction design at related
abstraction level requires an interaction concept that can model interactions
at a higher abstraction level (called abstract interactions) and interactions at a
lower abstraction level (called concrete interactions), in order to avoid any
conceptual gap between abstraction levels.

An interaction is defined as a unit of activity that is performed by multiple
entities or participants in cooperation to establish a common result.
Different participants can have different views on the established result. The
possible results of an interaction are specified using contribution constraints
and distribution constraints. Contribution constraints model the
responsibility of the participants in the establishment of the interaction
result. Distribution constraints model the relation between the participants’
views. An interaction provides mutual synchronisation or time dependency
between the participants. This interaction concept can model abstract and
concrete interactions. A designer can hence use a single interaction design
concept during a design process.

Two design transformations are defined, namely interaction refinement and
interaction abstraction. Interaction refinement replaces an abstract interaction
with a concrete interaction structure. Interaction abstraction replaces a
concrete interaction structure with an abstract interaction. A set of
conformance requirements and a conformance assessment method are
defined to check the conformance between an abstract interaction and
concrete interaction structure.

VI

 In an interaction design process, a designer first represents a service
composition as an abstract interaction that specifies the desired result. This
abstract interaction is then refined into a concrete interaction structure that
specifies how to establish that result. Interaction refinement can be done
recursively until it results in a concrete interaction structure that can be
mapped onto available interaction mechanisms. Every refinement is
followed by conformance assessment.

To facilitate the development process of a service composition, this
thesis provides
– patterns for interaction refinement, which serve as guidelines on

possible refinements of an abstract interaction;
– abstract representations of interaction mechanisms, which allow

interaction mechanisms to be included in an interaction design at a
higher abstraction level; and

– a transformation tool to transform an interaction design at an
implementation level to an executable implementation.

The use of the interaction concept, design transformations, patterns for

interaction refinement, abstract representations of interaction mechanisms,
and transformation tool are illustrated with two case studies. In the first
case study, we design a travel reservation application as a service
composition using a top-down design approach. The services and
application components that are involved in the service composition have to
be developed. In the second case study, we design enterprise application
integration for an order management that composes existing services and
applications. We follow an integration approach and use our interaction
concept during the design process. The obtained integration solution is
then transformed to an executable implementation using our
transformation tool.

Acknowledgements

During the development of this thesis, many people supported and
contributed to my work. For them, I would like to express my gratitude
here.

First of all, I would like to thank my promotor Chris Vissers and my
assistant promotors Marten van Sinderen and Dick Quartel for their
supervision. Also, I would like to thank Remco Dijkman, who formulated
the initial ideas of my research.

I would like to thank the members of my graduation committee:
prof.dr. Colin Atkinson, prof.dr. Peter Linington, prof.dr.ir. Roel Wieringa,
and prof.dr. Jos van Hillegersberg. It is an honour to have you in this
committee.

I would like to thank the people of the A-MUSE project for the
collaboration during my research. Also, I would like to thank my colleagues
in the ASNA and IS groups for providing very pleasant working
environment. Special thanks should go to the secretaries of these groups:
Annelies and Suse for making administrative work much easier.

It was not easy to have a baby while writing a PhD thesis. Luckily, I have
so many good friends that helped me and my family during that period:
David and Vince, Arie and Meli, Pablo and Flavia, Stanislav and Vania, Meti,
Lizda, Oma Dewi, Oma Wil, all the PPI- and IMEA-members, and all other
friends that I cannot mention their names here one by one.

I would like to thank my parents: almarhumah Ibu, Bapak, Ibuk, and
Ayah; and my brothers and sisters for their constant support, love, and pray.

Finally, I would like to thank my wife Emma for her company, support
outside of the office, and belief in my success. To my little angel Muzhda,
thank you for being the reason for moving forward in my life.

Teduh Dirgahayu
Yogyakarta, July 2010

Contents

 Abstract v

 Acknowledgements vii

Chapter 1. Introduction 1
1.1 Background .. 1
1.2 Motivation.. 4
1.3 Objectives... 9
1.4 Scope ... 10
1.5 Approach.. 11
1.6 Outline of the thesis ... 12

Chapter 2. Analysis of interaction design concepts and methods 15
2.1 Design concepts and design language... 15
2.2 Design concepts and design methods .. 17
2.3 Framework for suitability analysis.. 18
2.4 Suitability analysis ... 23
2.5 Examples of interaction designs .. 38
2.6 Concluding remarks.. 43

Chapter 3. Design concepts for interaction modelling 45
3.1 Basic design concepts.. 46
3.2 System perspectives .. 50
3.3 Concepts for behaviour modelling... 53
3.4 Abstract interaction modelling .. 67
3.5 Enhanced interaction concept... 70
3.6 Relationships between behavioural concepts.................................... 76
3.7 Shorthand notations ... 77
3.8 Concluding remarks.. 80

X CONTENTS

Chapter 4. Interaction design transformations 83
4.1 Behaviour refinement ... 84
4.2 Behaviour abstraction ... 88
4.3 Refinement of an action into an interaction..................................... 99
4.4 Strategy for interaction refinement.. 100
4.5 Interaction refinement.. 101
4.6 Conformance assessment .. 107
4.7 Patterns for interaction refinement ... 114
4.8 Related work .. 124
4.9 Concluding remarks.. 125

Chapter 5. Abstract representations of interaction mechanisms 127
5.1 Motivation.. 127
5.2 Approach.. 129
5.3 Abstractions of interaction mechanisms... 133
5.4 Example of use ... 150
5.5 Related work .. 152
5.6 Concluding remarks.. 153

Chapter 6. Transformation to executable implementations 155
6.1 Service compositions in Web Services ... 155
6.2 Approach.. 160
6.3 Modelling restrictions ... 163
6.4 Pattern recognition ... 169
6.5 Constraint transformation... 172
6.6 Model realisation .. 182
6.7 Related work .. 190
6.8 Concluding remarks.. 191

Chapter 7. Case study: travel reservation application 193
7.1 Case description ... 193
7.2 Design process 1... 195
7.3 Design process 2... 207
7.4 Discussion .. 214
7.5 Evaluation... 216

Chapter 8. Case study: enterprise application integration 219
8.1 EAI approach.. 219
8.2 Case description ... 221
8.3 Integration solution .. 223
8.4 Discussion .. 227
8.5 Evaluation... 228

 CONTENTS XI

Chapter 9. Conclusions 231
9.1 General conclusions.. 231
9.2 Research contributions ... 233
9.3 Directions for further research.. 235

Appendix A. Conformance assessments in case study 1 237
A.1 Design process 1... 237
A.2 Design process 2... 249

 References 253

 Publications by the author 265

 SIKS Dissertation series 267

Chapter 1

1. Introduction

This thesis proposes a concept and transformations for designing
interactions in the development of a service composition. To facilitate the
development of a service composition, this thesis also provides abstract
representations of interaction mechanisms and a transformation tool to
transform an interaction design into an executable implementation. The
concept, transformations, abstract representations, and tool aim at enabling
and encouraging designers to design interactions at related abstraction
levels. In this way, the business requirements of a service composition can
be transformed correctly to a software application. Also, the complexity of
an interaction design can be managed adequately.

This chapter presents the motivation and objectives of this thesis as well
as the approach followed. It is organised as follows: Section 1.1 presents
background information, Section 1.2 provides the motivation, Section 1.3
defines the objectives, Section 1.4 defines the scope, and Section 1.5
presents the approach followed in the research. Section 1.6, finally,
presents the structure of the remainder of this thesis.

1.1 Background

A distributed application is an application that is composed from a number
of application components that interact with each other. Typically, these
application components are distributed over different computing machines
at different locations, connected with each other via a communication
network. Distributed applications range from enterprise applications, e.g.,
e-commerce, enterprise application integration, and computer-supported
cooperative work, to personal applications, e.g., e-mail and instant
messengers. Distributed applications facilitate many activities of modern
life.

2 CHAPTER 1 INTRODUCTION

In the development of a distributed application, a paradigm called
service-oriented computing [55, 100] has been widely accepted and is now
gaining popularity. In this paradigm, an application component exposes its
external functionality without revealing its internal functions and structures.
Application components interact with each other to deliver a service.

A service is the establishment of some valuable effect through the interaction between
two or more application components [113].

In a service, one application component plays the role of service user

while the other application components play the role of service providers. A
service user requests a service from one or more service providers. A service
provider offers a service to a service user. These partial definitions of the
service are called the requested service and the offered service, respectively.

Services can be composed into a service composition [55, 100, 127].

A service composition is a composition of services to deliver a new service.

In service oriented computing, a distributed application is developed as

a service composition by reusing existing services. Development of
distributed applications by reuse promises less development cost and
shorter time-to-market [50, 122].

A service composition is specified as one or more related interactions
between application components. Therefore, designing those interactions
and their relations is the central activity in the design of a service
composition. It deals only with the external functionality of the application
components. This activity results in an interaction design.

An interaction design is a design that describes interactions between application
components.

A service composition can be a choreography or orchestration [21,

103]. A choreography defines a set of related interactions between
application components to achieve a common goal. The business logic of
the choreography is distributed over the application components. Figure
1-1 illustrates a choreography between inventory and manufacture services.
The common goal of this choreography can be the completion of a
production order. This figure uses an intuitive graphical notation. A
rounded rectangle represents an application component. A bidirectional
arrow represents an interaction in terms of message exchanges.

Figure 1-1
A choreography between
an inventory and
manufacture services

 BACKGROUND 3

An orchestration defines the offered service of a service provider as
interactions between a coordinator and other service providers. The
business logic of the orchestration is centralised in the coordinator. The
coordinator coordinates interactions between the service user of the service
provider for which the orchestration is defined and the service providers
that are parts of the orchestration. Figure 1-2 illustrates a travel agent as an
orchestration. The travel agent is composed of a coordinator, hotel service
provider, and airline service provider.

Problem description
A service composition can support an organisation’s business. In the design
process of such a service composition, a designer plays the role of business
analyst or application designer. A business analyst analyses and elicits
requirements for a business process and recommends a business process
that satisfies those requirements [56]. This business process is specified as
an interaction design. An application designer designs a software application
that implements the interaction design specified by the business analyst.

The different sets of concepts in the business and software domains
create a conceptual gap between the domains. This gap can mean that a
business process is not correctly implemented as a software application [17,
49]. To bridge this gap, the business analyst and application designer should
collaborate, to some extent, with each other [49, 62]. Such collaboration
can use related abstraction levels as illustrated in Figure 1-3. At a certain
abstraction level, e.g., n+1, the business analyst and application designer
work together to develop interaction design D1.

A proper design method is necessary to guide the development process
of a service composition through these related abstraction levels. In this
development process, an interaction design at an abstraction level is refined
or abstracted into another interaction design at another abstraction level.
The design method should have a correctness mechanism to ensure that a
refinement or abstraction results in a correct interaction design.

To avoid any conceptual gap between abstraction levels, the design
method should use the same set of design concepts at all abstraction levels.
This would also facilitate the development of a correctness mechanism.

Figure 1-2
A travel agent as an
orchestration

4 CHAPTER 1 INTRODUCTION

Business domain

Software domain

design D1

design D2

design D3

design D0

business analyst

application designer

collaboration between
business analyst and
application designer

abstraction level n+3

abstraction level n+2

abstraction level n+1

abstraction level n

refinement

refinement

refinement

abstraction

abstraction

abstraction

Several methods for designing service compositions have been proposed,
e.g., in [15, 32, 33, 41, 51, 65, 76, 81, 108, 113, 117, 125, 143, 145].
Our analysis [37], later presented in Chapter 2, shows that these design
methods use design languages whose interaction design concepts are not
suitable for modelling interactions at higher abstraction levels. Most of the
interaction design concepts represent interaction mechanisms that are
provided by communication middleware. Such an interaction design
concept forces a designer to develop interaction designs at an
implementation level. All interactions have to be represented in terms of
middleware interaction mechanisms.

Designing a complex service composition at an implementation level,
though, results in an interaction design that reveals the complexity of its
intended implementation. This has several disadvantages as follows.
– The interaction design is difficult to create because the designer has to

define a service composition that satisfies business and implementation
requirements at the same time. A complex interaction design is prone to
design errors.

– The interaction design is difficult to modify when some implementation
requirements change. It offers no implementation alternative.

1.2 Motivation

Designing a service composition at higher abstraction levels can bridge the
conceptual gap between the business and software domains. It also helps
the designer to manage the complexity of a service composition and to
overcome the disadvantages mentioned in Section 1.1. We adopt two
design approaches: related abstraction levels and the MDA approach. We identify
research questions associated with these approaches, which need to be

Figure 1-3
Collaboration between a
business analyst and
application designer to
bridge the conceptual
gap

 MOTIVATION 5

answered to allow the design of service compositions at higher abstraction
levels. Those questions motivate us to do the research.

1.2.1 Related abstraction levels

In a design process that uses related abstraction levels, a design at a certain
abstraction level is transformed into a design at a lower or higher
abstraction level. The transformation is called refinement or abstraction,
respectively.

In this thesis, the terms abstract and concrete are used to denote a higher
and lower abstraction level, respectively, without referring to particular
abstraction levels. The notion of higher and lower abstraction levels is
relative, i.e., an abstraction level n is lower than an abstraction level n–1 and
higher than an abstraction level n+1.

A step-wise refinement is a design process in which an abstract design is
successively refined into more concrete designs. During refinement, the
designer gradually includes solutions that satisfy business or implementation
requirements, or defines these solutions in more detail. This approach
reveals design complexity in a controlled way, i.e., the design complexity
gradually increases from an abstract design to concrete designs.

Figure 1-4 illustrates a step-wise refinement in an interaction design
process. At a higher abstraction level n, an interaction design D0 is created
to satisfy initial requirements R0. This interaction design is refined into
another interaction design D1 at a lower abstraction n+1 to satisfy
requirements R1. Interaction design D1 can be further refined into another
interaction design D2 at another lower abstraction level n+2 to satisfy
requirements R2.

A concrete design is a correct refinement of an abstract design if it
preserves the design information defined in the abstract design, while it

Figure 1-4
Step-wise refinement

6 CHAPTER 1 INTRODUCTION

defines additional design details that does not conflict with the abstract
design. Such a concrete design conforms to an abstract design. There are two
alternatives to obtain a conforming concrete design. In the first alternative,
a concrete design is defined by applying well-considered refinement rules.
These rules guarantee that the concrete design conforms to its abstract
design. This alternative, however, limits the designer’s freedom in defining a
concrete design. In the second alternative, a concrete design is defined
without applying refinement rules and then is checked whether it conforms
to an abstract design. This “trial-and-error” alternative gives the designer
more freedom in defining a concrete design. In this alternative, every
refinement must be followed by a conformance assessment [44, 107, 110].

This design process can be further continued until it results in an
interaction design at an implementation level that can be mapped onto
available interaction mechanisms.

In our design approach, every interaction design is developed as a
complete design. An abstract design is complete when it addresses and
satisfies the requirements that are essential at the abstraction level
considered. A concrete design is complete by preserving the design
information defined in an abstract design and by satisfying requirements
that result from specific implementation choices.

Figure 1-5 depicts an example of abstract and conforming concrete
interaction designs. Figure 1-5(i) represents the purchase of a product
between a buyer and seller as a single abstract interaction purchase. This
interaction should specify the essential properties of the interaction, which
we define as follows: when the interaction is completed, a product must
have been selected, delivered, and payed for. Since this interaction cannot
be directly mapped onto available interaction mechanisms, e.g., message-
passing communication or request-response operation, this interaction
should be replaced with conforming concrete interactions.

In Figure 1-5(ii), three related concrete interactions, namely selection,
payment, and delivery, replace the abstract interaction purchase. The relations
between these concrete interactions define the order in which the
interactions should be performed. (The relations are not shown in the

Figure 1-5
Examples of abstract and
concrete interactions

 MOTIVATION 7

figure.) Further refinement is required since these interactions cannot be
directly mapped onto available interaction mechanisms either.

Designing interactions at related abstraction levels produces a sequence
of interaction designs of the same service composition; each of these has a
different degree of complexity. Different interaction designs serve different
purposes. For example, an abstract interaction design can be used in an
analysis in the business domain. A concrete interaction design with full
implementation details is used as a reference for an executable
implementation.

Designing interactions at related abstraction levels gives the following
benefits.
– An abstract interaction design is easier to understand and to analyse in

its business domain. Implementation details are decided and elaborated
in concrete interaction designs.

– When some implementation requirements change, it affects only
concrete interaction designs. Abstract interaction designs remain intact
and can be refined again into concrete interaction designs that satisfy the
changes.

– Alternative implementations can be developed based on the same
abstract interaction design to satisfy alternative implementation
requirements.

1.2.2 Model-Driven Architecture approach

The Model Driven Architecture (MDA) approach [90, 91] has been widely
accepted for designing distributed applications and has also been applied in
the development of service compositions [14, 23, 35, 48, 74, 98].

The MDA approach distinguishes three types of models: a
computational-independent model (CIM), a platform-independent model
(PIM), and a platform-specific model (PSM). This distinction allows
separation of concerns by specifying models at different abstraction levels.
Figure 1-6 depicts the relationships between those types of models.

A CIM defines the goal and requirements of a distributed application. It
abstracts from the structure and functionality of the application. A CIM
accommodates different designs to achieve the goal and to satisfy the
requirements.

A PIM specifies the structure and functionality of a distributed
application defined in a CIM. It abstracts from the details of the
technological platform to which the application is targeted. In this way, a
PIM can be implemented with a number of different platforms. This
reduces the development cost of the same application functionality on
different platforms.

8 CHAPTER 1 INTRODUCTION

In the MDA approach, a PIM and PSM are obtained from the
application of model transformations on a CIM and PIM, respectively. A
model transformation defines a specification for transforming a model to
another model of the same application. In Figure 1-6, a model
transformation T1 transforms a CIM to a PIM. Another model
transformation T2 transforms that PIM to a PSM. A CIM can be
transformed to a number of PIMs. A PIM can be transformed to a number
of PSMs. Each transformation requires a different transformation
specification. A model transformation can also be defined to transform a
PSM to an executable implementation. A model transformation can be
done manually or (semi-)automatically.

Interaction designs at successive abstraction levels can be aligned with a
CIM, PIMs, and PSMs, as illustrated in Figure 1-7. An interaction design
D0 that consists of an abstract interaction specifying the goal and
requirements of a service composition is a CIM. This interaction design is
recursively refined into interaction designs D1 and D2 that abstract from
the details of the technological platform to which the service composition is
targeted. These interaction designs are PIMs. Further refinement into an
interaction design D3 is done to facilitate an implementation with a specific
target platform. This interaction design is a PSM. Refinement is a model
transformation in the MDA approach.

The separation of concerns between a PIM and PSM proposed by the
MDA approach can reduce the development cost of the same distributed
application on different platforms. When a tool support for model
transformation is available, the MDA approach can improve
implementation quality, speeds up the development process, and further
reduces the development cost.

Figure 1-6
Relationships between
CIM, PIM, and PSM

 OBJECTIVES 9

1.2.3 Research questions

To obtain benefits of the use of related abstraction levels and the MDA
approach in the design process of service compositions, we identify the
following research questions.
– RQ1: What interaction design concept is suitable for modelling

interactions at related abstraction levels? Are available interaction design
concepts suitable for this purpose?

– RQ2: How to transform interaction designs between related abstraction
levels? How to assess the conformance between interaction designs at
different abstraction levels?

– RQ3: How to facilitate the development process of a service
composition? How can the MDA approach contribute to that process?

1.3 Objectives

The objectives of our research directly correspond to the research questions
identified in Section 1.2.3. The objectives are as follows.

The first objective is to propose an interaction design concept that is suitable for
modelling interactions at related abstraction levels. The interaction design concept
should be independent from any interaction mechanism, in order to
prevent the interaction design concept from forcing a designer to design
service compositions at an implementation level. The interaction design
concept should be generic with regard to abstraction levels and application
domains. This is to allow a designer to model interactions at any abstraction
level in any application domain.

Figure 1-7
Interaction designs at
successive abstraction
levels aligns with a CIM,
PIMs, and PSM

10 CHAPTER 1 INTRODUCTION

The second objective is to provide interaction design transformations between
related abstraction levels. Interaction design transformations between related
abstraction levels should preserve the conformance between them. Thus,
the design transformation should allow a designer to assess the
conformance between interaction designs at different abstraction levels.
This includes the definition of conformance requirements and a
conformance assessment method.

The third object is to facilitate the design and implementation process of a
service composition. We aim to provide
– guidelines on the possible refinements of an interaction design;
– abstract representations of interaction mechanisms, which allow

interaction mechanisms to be included in an interaction design at a
higher abstraction level; and

– a transformation tool to transform an interaction design at an
implementation level to an executable implementation on a Web
Services platform.

1.4 Scope

We define an interaction design concept and transformations for ISDL
(Interaction System Design Language) reported in [31, 44, 107, 110, 111,
130, 131]. Reasons for choosing ISDL are as follows.
– The ISDL design concepts are basic design concepts that can be used at

any abstraction level in a design process. These design concepts are not
specific to some application domain. ISDL, hence, allows us to develop
an interaction design concept that is generic with regard to abstraction
levels and application domains.

– The ISDL design concepts have clear semantics that are necessary to
assess whether a concrete design conforms to an abstract design. For
assessment, ISDL is supported with general behaviour transformations.
We can reuse and extend those transformations in order to develop
interaction design transformations.

– The ISDL interaction concept satisfies some of the requirements that we
define for an interaction design concept that is suitable for modelling
abstract interactions (presented later in Chapter 2). We can enhance the
interaction concept such that it satisfies all the requirements.

– ISDL is supported with a modelling and simulation tool [57].
Availability of such tools encourages designers to use ISDL.

To facilitate the implementation process of a service composition, this

thesis provides abstract representations of interaction mechanisms provided
by communication middleware. We focus on interaction mechanisms that

 APPROACH 11

are provided in CORBA [89] and Web Services [133] platforms because
CORBA and Web Services specifications are available in the public domain
and, therefore, allow us to study the behaviour of their interaction
mechanisms. Web Services, in particular, is a popular platform to
implement services and service compositions.

To facilitate the implementation process of a service composition, this
thesis provides a transformation tool to transform an interaction design at
an implementation level to an executable implementation in a Web Service
platform. We focus on a transformation tool that transforms an interaction
design that describes an orchestration to an executable implementation in
BPEL (Business Process Execution Language) 1.1 [20].

1.5 Approach

In order to achieve the objectives of our research, we use the following
approach.
1. We analyse interaction design concepts and methods for designing

service compositions. In the analysis, we focus on the suitability of the
design concept to model interactions at higher abstraction levels; and
the way the interaction design methods manage the complexity of
interaction designs. Our first observation is that the interaction design
concepts are less suitable for that purpose and, consequently, the
interaction design methods that are based on those concepts cannot
manage the complexity of interaction designs adequately.

2. We define an interaction design concept that is suitable for modelling
interactions at related abstraction levels. Since we use behaviour
concepts of ISDL, we first analyse the suitability of the current ISDL
interaction concept to model interactions at higher abstraction levels.
We then propose the necessary enhancement for that interaction
concept.

3. We define interaction design transformations between successive
abstraction levels. Since we use ISDL, we first analyse design
transformations that are available in ISDL for designing interactions at
successive abstraction levels. We then propose extensions of the existing
design transformations. We also provide guidelines on interaction
refinements.

4. Using our interaction design concept and transformations, we provide
abstract representations of common interaction mechanisms provided
by CORBA and Web Services platforms. We first represent interaction
mechanisms as interaction patterns that are independent of the details
of specific middleware. We then abstract each interaction pattern into a

12 CHAPTER 1 INTRODUCTION

single interaction. These abstract representations could serve as target
refinements at an implementation level.

5. We develop an automatic model transformation tool to transform an
interaction design at an implementation level to an executable
implementation in a Web Services platform.

6. We apply our interaction design concept and transformations in the
development processes of service compositions. We carry out two case
studies: travel reservation application [134] and enterprise application
integration [123]. In the case studies, we evaluate our interaction design
concept, transformations, abstract representations of interaction
mechanisms, and transformation tool to assess whether they serve their
purposes well and can be used in practice.

1.6 Outline of the thesis

The remainder of this thesis is structured as follows.
Chapter 2 (Analysis of interaction design concepts and methods) analyses

available interaction design concepts and methods for designing service
compositions. This chapter concludes that available interaction design
concepts are not suitable for modelling interactions at higher abstraction
levels. The design methods are forced to produce interaction designs at an
implementation level.

Chapter 3 (Design concept for interaction modelling) defines an interaction
design concept that is suitable for modelling interactions at related
abstraction levels. This chapter first introduces ISDL design concepts,
including its current interaction concept. It then discusses the limitation of
the interaction concept for modelling interactions at higher abstraction
levels and proposes the necessary enhancement.

Chapter 4 (Interaction design transformations) defines interaction design
transformations between successive abstraction levels. This chapter first
introduces the design transformations provided by ISDL. It then discusses
their limitations for transforming interaction designs between successive
abstraction levels and proposes the necessary extensions. This chapter
includes guidelines on possible refinements of an interaction design.

Chapter 5 (Abstract representations of interaction mechanisms) presents
abstract representations of common interaction mechanisms supported by
communication middleware, i.e., CORBA and Web Services. When an
abstract representation of an interaction mechanism cannot be obtained, a
shorthand notation is introduced.

Chapter 6 (Transformation to executable implementations) presents an
automatic transformation tool to transform an interaction design at an
implementation level to an executable implementation in BPEL.

 OUTLINE OF THE THESIS 13

Chapter 7 (Case study: travel reservation application) and Chapter 8 (Case
study: enterprise application integration) present applications and evaluations of
our interaction design concept and transformations in the development of
service compositions.

Chapter 9 (Conclusions) concludes this thesis by outlining our main
contributions and some directions for further research.

Chapter 2

2. Analysis of interaction design
concepts and methods

This chapter analyses interaction design concepts and methods for service
compositions. Specifically, we analyse the suitability of the interaction
design concepts to model interactions at higher abstraction levels. We
analyse the way the design methods use the interaction design concepts to
bridge the conceptual gap between the business and software domains and
to manage the complexity of interaction designs.

This chapter is organised as follows. Section 2.1 describes the relation
between design concepts and a design language. Section 2.2 describes the
relation between design concepts and design methods. Section 2.3 defines a
framework for suitability analysis. Section 2.4 presents our analysis. Section
2.5 shows an example of a top-down design process of a service
composition using an unsuitable interaction design concept. Section 2.6,
finally, presents some concluding remarks.

2.1 Design concepts and design language

The purpose of a design process is to produce a design prescribing a system
that should be built. A design addresses a system’s characteristics or
properties that are relevant to a certain purpose while ignoring properties
that are considered irrelevant to that purpose.

A design is created as a composition of design concepts. A design concept
models aspects of objects or phenomena in a given domain. Design
concepts exist only in the mind of a designer. Since a design is a
composition of design concepts, a design also exists only in the mind of a
designer [44, 131]. When a design process starts, the system that should be
built does not exist yet. A designer creates a design as a mental image that
represents the system.

16 CHAPTER 2 ANALYSIS OF INTERACTION DESIGN CONCEPTS AND METHODS

For the purposes of documentation, communication, and analysis, a
design, and thus the design concepts used, must be represented in some
tangible form. A design notation is therefore necessary to represent a design
concept in a concise, complete, and unambiguous way. Such notations can
be graphical or textual. A design language is a collection of design notations
and rules to compose them. In a design language, the design concepts
define the semantics, the design notations define the syntax, and the
composition rules define the grammar.

Using a design language, a designer can express a design as a specification.
A specification is created as a composition of design notations that specifies
a system. By interpreting a specification, a designer can create a mental
image of the corresponding design and refer to it.

Figure 2-1 depicts the relations between design concepts, design, design
notation, and specification [44]. Design concepts and design exist in the
conceptual world in the designer’s mind. Design notations and specification
exist in the symbolic world.

A specification represents a design of a system. In this thesis, the term
design is used to denote design and specification.

A design language may have multiple different notations for the same
design concept. For example, UML (Unified Modeling Language [96])
provides different interaction notations that represent the same interaction
design concept in different types of diagrams. Our analysis focuses on
interaction design concepts, not on interaction design notations. However,
examples of interactions in a design notation remain necessary to
communicate the interaction design concept to the reader.

Some design languages may have no interaction design concept. In such
a design language, an interaction is typically represented by a composition
of other design concepts. In this case, we analyse what kind of interaction is
represented by that composition.

Figure 2-1
Relations between the
conceptual world and
the symbolic world

 DESIGN CONCEPTS AND DESIGN METHODS 17

2.2 Design concepts and design methods

A design method provides guidelines to perform design steps in a design
process. A design method can distinguish a number of abstraction levels. An
abstraction level marks an intermediate design as the result of a step in a
design process. Refinement, the transformation of an abstract design into a
more concrete design, is a creative process of composing design concepts
[44]. A set of design patterns [11, 16, 46, 54, 70, 129] can be provided to
give a designer hints in composing design concepts in order to satisfy
certain generic requirements.

A design method can refer to the design concepts of a design language.
For examples, the design methods in [32, 41, 143] are specific to BPMN
(Business Process Modeling Notation [87]). Those design methods provide
guidelines for the development of a design by referring to the BPMN design
concepts. Such a design method is language dependent, i.e., depends on the
referenced design language. It, therefore, cannot be used with other design
concepts. Figure 2-2 depicts the relations between a design method, design
concepts, and design steps in the development of designs.

A design method can restrict the use of design concepts, for example, by
using specific annotations or stereotypes. The semantics of a design
concept, however, cannot be violated by a design method. A design method
can also define a subset of design concepts in a design language, which are
allowed to be used in a design. In this way, a design method creates a profile
of that design language [95]. A profile is targeted to a specific use, e.g., a
specific application domain or implementation platform [9, 71, 92, 93].

We analyse interaction design concepts and methods for service
compositions. Since a number of design methods may use the same design
language, we first analyse the interaction design concepts of the design
languages that are used by the design methods and then analyse the design
methods.

Figure 2-2
A design method refers
to design concepts to
guide design steps to
produce designs

18 CHAPTER 2 ANALYSIS OF INTERACTION DESIGN CONCEPTS AND METHODS

2.3 Framework for suitability analysis

In this section, we define a framework for analysing the suitability of
interaction design concepts to model abstract interactions.

2.3.1 Abstract interactions

In general, an abstract design reflects only design properties that are
essential at the considered abstraction level, while ignoring properties that
are irrelevant at the considered abstraction level. The ignored properties
may be essential at a lower abstraction levels. At any abstraction level, one
can choose which properties are considered essential and thus which
properties one abstracts from. In interaction design, we want to abstract a
structure of interactions for achieving a specific goal into a single interaction
that only specifies that goal. This allows us to separate concerns of “what is
the desired goal”, the higher abstraction level, and “how to achieve that goal”,
the lower abstraction level [60]. In this thesis, a goal is represented by a
desired result. A goal is achieved when this result is established.

This separation of concerns leads to the definition of an interaction at
two related abstraction levels as follows.
– At a higher abstraction level, an abstract interaction specifies a desired

result.
– At a lower abstraction level, a structure of more concrete interactions

specifies how to establish that result.
These related abstraction levels can be considered as a relative notion. An
abstraction level n is higher than an abstraction level n+1, but is lower than
an abstraction level n–1.

An entity that is involved in an interaction has its responsibility in the
establishment of the interaction result. This responsibility can be modelled
as requirements or constraints that have to be satisfied by the result. In a
design process at related abstraction levels, an abstract interaction specifies
the requirements that the involved entities have for the result; and a
structure of more concrete interactions specifies how the involved entities
satisfy those requirements.

We argue that a designer should be able to represent a structure of
interactions that establish a certain result by an abstract interaction that
yields the same result. This allows better understanding of the involved
entities, the responsibilities of those entities, and the desired result, while
abstracting from detailed interactions between those entities.

Of course, a designer could represent a structure of interactions by a
generic activity, i.e. an action [131], that abstracts also from the
participation of individual entities. With this representation, the designer
only knows the desired result. This, however, is not sufficient in case of a

 FRAMEWORK FOR SUITABILITY ANALYSIS 19

service composition where a designer wants to distinguish the different
entities. In the beginning of a design process of a service composition, most
likely, the designer has already some knowledge of existing or future
services, and the participating entities, to be composed and of the
distribution of responsibilities between the entities in the establishment of a
desired result. This knowledge would be best expressed as an interaction,
not as an action.

Abstract interactions allow a business analyst to participate in the design
of a service composition. A business analyst understands very well the
business domain, but they are typically not knowledgeable or interested in
system or implementation details. The participation of a business analyst is
important to increase the possibility that a service composition indeed
meets the business needs.

2.3.2 Motivating example

We use a service composition in Figure 2-3 to motivate the definition of
our requirements for an interaction design concept that is suitable for
modelling abstract interactions. This figure uses intuitive graphical notation.
A rounded rectangle represents an entity. A bidirectional arrow represents
an interaction. Interactions are numbered to indicate the order in which
they should be performed. Entities that are involved in an interaction are
called participants of that interaction.

Figure 2-3 illustrates the following interactions between a buyer, seller,
bank, and courier for purchasing an article.
1. The buyer browses a product catalogue of the seller.
2. The buyer orders an article in that product catalogue.
3. The seller sends the invoice of the ordered article to the buyer.
4. The buyer orders the bank to transfer some amount of money as

indicated in the invoice, from the buyer’s bank account to the sellers’
bank account.

5. The buyer notifies the seller that the requested amount of money has
been transferred to the seller’s bank account as the payment of the
invoice.

6. The seller checks with the bank whether the money has been received.
7. The seller confirms the payment to the buyer.
8. The seller orders the courier to deliver the purchased article.
9. The courier delivers the article to the buyer.
10. The courier confirms the delivery of the article to the seller.

20 CHAPTER 2 ANALYSIS OF INTERACTION DESIGN CONCEPTS AND METHODS

The designer may want to represent this example by a single abstract
interaction for purchasing an article. However, the complexity of this
example hinders the designer to derive an abstraction in a single step. To
overcome the complexity, the designer can group those interactions into
three smaller compositions of interactions: selection, payment, and delivery (as
indicated with dashed rectangles in the figure); each of which is for
achieving a sub-goal. Interaction selection is for selecting an article from the
seller’s catalog. Interaction payment is for paying a selected article.
Interaction delivery is for delivering a purchased article from the seller to the
buyer. Their abstractions can be derived and then further abstracted into a
single interaction.

2.3.3 Abstraction patterns

The motivating example consists of four generic abstraction patterns. A
pattern is characterised by a generic structure of interactions and its desired
abstraction.

Pattern 1: multiple interactions to a single interaction
A structure of interactions may consist of multiple interactions between
participants, in which all participants are engaged in all interactions. This
pattern abstracts such a structure of interactions into an interaction
between those participants.

Figure 2-4 illustrates multiple interactions between a buyer and seller
for selecting an article (i.e., interactions 1 and 2 of the motivating example
in Figure 2-3). We want to be able to abstract those interactions into an
interaction between the buyer and seller.

Figure 2-3
A service composition
for purchasing an article

 FRAMEWORK FOR SUITABILITY ANALYSIS 21

Pattern 2: intermediary elimination
A structure of interactions may consist of indirect interactions between
participants through an intermediary. This pattern abstracts such a
structure of interactions into a direct interaction between those
participants.

Figure 2-5 illustrates indirect interactions between a buyer and seller
through a courier for delivering an article (i.e., interactions 8, 9, and 10 in
Figure 2-3). We want to be able to abstract those interactions into an
interaction between the buyer and seller.

Pattern 3: bilateral interactions to a multilateral interaction
A structure of interactions may involve three or more participants that
interact with each other, in which every interaction is a bilateral interaction,
i.e., performed by two participants only. A participant does not have to
interact with all other participants. This pattern abstracts such a structure of
interactions into a multilateral interaction between the participants.

Figure 2-6 illustrates interactions between a buyer, seller, and bank for
paying an invoice (i.e., interactions 3, 4, 5, 6, and 7 in Figure 2-3). We
want to be able to abstract those interactions into a multilateral interaction
between the buyer, seller, and courier.

Figure 2-4
Pattern 1: multiple
interactions to a single
interaction

Figure 2-5
Pattern 2: intermediary
elimination

22 CHAPTER 2 ANALYSIS OF INTERACTION DESIGN CONCEPTS AND METHODS

Pattern 4: participant elimination
A structure of interaction may consist of an interaction between three or
more participants, in which some of the participants facilitate the
implementation of that interaction. This pattern abstracts such an
interaction into an interaction that abstracts from the facilitating
participant.

Figure 2-7 illustrates an interaction between a buyer, seller, and bank
for paying an invoice (i.e., the abstraction of interactions 3, 4, 5, 6, and 7 in
pattern 3 in Figure 2-6). The bank acts as a facilitating participant in this
interaction. We want to be able to abstract this interaction into an
interaction between the buyer and seller only.

2.3.4 Suitability requirements

To assess whether an interaction design concept is suitable for modelling
abstract interactions, we define the following suitability requirements. An
interaction design concept should allow a designer
– SR1: to model an interaction between two or more participants.

Figure 2-6
Pattern 3: bilateral
interaction to a
multilateral interaction

Figure 2-7
Pattern 4: participant
elimination

 SUITABILITY ANALYSIS 23

None of the abstraction patterns limits the maximum number of
participants of an interaction. The abstract interaction in pattern 3 and
the structure of interaction in pattern 4 require an interaction design
concept that can model an interaction between three or more
participants.

– SR2: to define different views of different participants on the established result.
Different participants may have different views on the result that is
established by an abstract interaction. A view is modelled by a set of
values that represents a (partial) result. In pattern 2, the different
interactions between an intermediary and different participants may
establish different views on a desired result. In patten 4, a facilitating
participant may have a partial interest in and, hence, a different view on
the established result.

– SR3: to specify the relation between different views of different participants.
Since different views represent the same established result, they must be
related to each other.

– SR4: to specify participants’ requirements.
Participants are interested in the interaction result and use it for their
own activities. They need to be able to impose their own requirements
on the result.

2.4 Suitability analysis

In this section, we analyse the interaction design concepts and methods for
service compositions in [15, 32, 33, 41, 51, 65, 76, 81, 108, 113, 117,
125, 143, 145]. These methods are selected based on the following criteria.
– Supported by graphical notations. A business analyst prefers to use graphical

notations to model (interacting) business processes because this way of
modelling is more intuitive and comfortable for them [87]. This
criterion excludes design methods that use only textual or mathematical
specifications for modelling service compositions.

– No technical details of implementation platforms. Typically, a business analyst
has no knowledge of, or interest in, the technical details of
implementation platforms. This criterion excludes design methods that
specific for implementation platforms.

The design languages used by those design methods are UML [96], BPMN
[87, 88], Petri Net [104], Let’s Dance [146], and ISDL [44, 107, 110]. We
focus on the behaviour modelling of service compositions, not on the
structural modelling.

24 CHAPTER 2 ANALYSIS OF INTERACTION DESIGN CONCEPTS AND METHODS

2.4.1 UML

UML provides different types of diagrams to serve the modelling of
different aspects of a system. UML offers a large number of packages. A
package consists of a set of design concepts.

The CommonBehaviors package provides a communication infrastructure
for interactions between objects, regardless of the diagram that is used to
model the interactions, i.e., activity, sequence, communication, or
interaction overview diagram. This package defines two kinds of
communication: signal passing and operation call. A signal passing is an
asynchronous communication. An operation call can be either an
asynchronous or synchronous communication. An asynchronous
communication between a sender and receiver allows the sender to
continue its execution without having to wait any reply from the receiver. A
synchronous communication makes the sender wait for a reply from the
receiver before it can continue its execution.

The Actions package provides action types for behaviour modelling. It
includes actions for communication: SendSignalAction, AcceptEventAction,
CallOperationAction, AcceptCallAction, and ReplyAction.

In a signal passing, a sender sends a send request (called a signal) to a
receiver by executing a SendSignalAction. After sending the signal, this
action completes immediately. To receive a signal, a receiver executes an
AcceptEventAction. A signal triggers a reaction in the receiver and is
without a reply. Figure 2-8 depicts signal-passing communication in a
sequence diagram.

To make an asynchronous operation call, a sender sends a call request to
a receiver by executing a CallOperationAction with attribute
‘isSynchronous’ set to ‘false’. After sending the call request, this action
completes immediately. To receive a call request, a receiver executes an
AcceptEventAction. This request invokes an operation in the receiver.
Figure 2-9 depicts an asynchronous operation call in a sequence diagram.

Figure 2-8
Signal passing in a
sequence diagram

 SUITABILITY ANALYSIS 25

To make a synchronous operation call, a sender sends a call request to a
receiver by executing a CallOperationAction with attribute ‘isSynchronous’
set to ‘true’. This attribute setting makes the action wait for a reply. To
receive a call request, a receiver executes an AcceptCallAction. This request
invokes an operation in the receiver. To send a reply, the receiver executes
a ReplyAction. When the sender receives the reply, its CallOperationAction
completes and produces outputs describing the reply. Figure 2-10 depicts a
synchronous operation call in a sequence diagram.

A request (i.e., a send request or a call request) is sent by exactly one
sender and is received by exactly one receiver. A sender, however, may
generate a number of requests; each of which is sent to a different receiver.

Signal passing and operation call represent message-passing and request-
response interaction mechanisms, respectively, that are commonly provided
by communication middleware.

The UseCases package includes the concept of UseCase. A use-case defines
a behaviour that a systems offers to its users, abstracting from the internal
structure or functions of the behaviour. Hence, a use-case can be
considered as an abstract interaction between a system and its users. The
behaviour of a use case can be described using interactions, activities, or
state machines. A system may offer a set of use-cases, but their execution
order cannot be specified.

The CompositeStructure package includes the concept of Collaboration. A
collaboration defines an abstraction of a structure of participants to
accomplish some functionality. A collaboration models the structure, not
the behaviour, of a distributed application.

Suitability
The suitability analysis of the UML interaction design concepts to model
abstract interactions is as follows.

Figure 2-9
Asynchronous operation
call in a sequence
diagram

Figure 2-10
Synchronous operation
call in a sequence
diagrams

26 CHAPTER 2 ANALYSIS OF INTERACTION DESIGN CONCEPTS AND METHODS

– SR1: A signal passing and operation call is performed by two participants
only, i.e., a sender and receiver. A designer cannot model an interaction
between three or more participants.
With a use-case, a designer can model an interaction between two or
more participants, i.e., a system and one or more users.

– SR2: In a signal passing, the participants see the same signal between
them. In an operation call, the participants see the same call request and
the same reply, if any. The participants have the same view on the
established result. A designer cannot define different views for different
participants.
A designer cannot define the result established in a use-case and thus
the views on the result.

– SR3: In a signal passing and operation call, the relation between the
participants’ views is pre-defined, i.e., all participants have the same
view. A designer cannot specify the relation between the participant’s
views.
Since the result and the views on the result cannot be defined in a use-
case, a designer cannot specify the relation between the views.

– SR4: A signal passing, operation call, and use-case have no property that
allows a designer to specify the participants’ requirements.

The UML interaction design concepts do not satisfy all the suitability
requirements.

Design methods
UML is used in the design methods in [15, 65, 81, 117, 125].

 [15] distinguishes between a static model and a dynamic model. The
static model specifies the structure of a service composition. The dynamic
model specifies the behaviour of the service composition. In the static
model, participants are represented by components that have uses
relationships with each other. In the dynamic model, a sequence diagram is
used to model interactions between those participants.

This design method does not distinguish any abstraction level. It cannot
bridge the conceptual gap between the business and software domains. It
cannot help a designer to manage the complexity of an interaction design.

[65] distinguishes three abstraction levels: collaboration level, transaction
level, and interaction level. At the collaboration level, a service composition is
modelled as a collaboration between objects that represent participants. A
collaboration may consist of sub-collaborations. At the transaction level, a
collaboration is refined into an activity diagram that specifies the behaviour
of the collaboration. An action in an activity diagram represents a
transaction between two or more participants. A transaction can be refined
into sub-transactions in another activity diagram. At the interaction level, an

 SUITABILITY ANALYSIS 27

activity diagram is refined into a number of sequence diagrams; each of
which refines an action of that activity diagram.

The abstraction levels can bridge the conceptual gap between the
business and software domains. This design method can help a designer to
manage the complexity of an interaction design. However, the use of
different concepts to represent interactions at different abstraction levels
can create conceptual gaps between the abstraction levels. Furthermore, the
use of collaborations and activity diagrams at higher abstraction levels shows
that the UML interaction design concepts cannot model abstract
interactions.

[81] distinguishes two abstraction levels. At the higher abstraction level,
a collaboration between participants is represented by a number of use-
cases in a use-case diagram. A participant is represented as an actor. At the
lower abstraction level, the behaviour of each use-case is specified in a
sequence diagram.

The higher and lower abstraction levels represent the business and
software domains, respectively, but do not bridge them. The use of use-
cases at the higher abstraction level allows the complexity of an interaction
design to be managed at the lower abstraction level. A use-case represents a
sub-goal of a service composition. A corresponding sequence diagram
specifies how to achieve a sub-goal. Since a use-case diagram does not
specify the execution order of use-cases, such an ordering has to be
specified in a sequence diagram. This makes the use-cases less helpful in
managing the complexity of an interaction design.

In [117], interactions between participants are modelled in an activity
diagram. An activity is annotated with a stereotype that indicates the activity
in an implementation. Stereotypes «WebServiceCall» and «ImmediateStep»
indicate a service call and internal activity, respectively. A participant is
modelled as a class that is stereotyped with «BusinessService» in a class
diagram. This class lists operations provided by that participant.

This design method does not distinguish any abstraction level. It cannot
bridge the conceptual gap between the business and software domains. It
cannot help a designer to manage the complexity of an interaction design.

[125] distinguishes between a static model and a dynamic model, but
does not distinguish any abstraction level (similar to [15]). In the static
model, a participant is modelled as a class that is stereotyped with
«serviceComponent». This class lists the operations that are provided by that
participant. In the dynamic model, the behaviour of a service composition
is modelled as an activity diagram. In this diagram, an activity represents a
service invocation.

This design method cannot bridge the conceptual gap between the
business and software domains. It cannot help a designer to manage the
complexity of an interaction design.

28 CHAPTER 2 ANALYSIS OF INTERACTION DESIGN CONCEPTS AND METHODS

2.4.2 BPMN

BPMN is a design language for business process modelling. Interactions
between business processes can be defined as a collaboration,
choreography, or conversation.

A collaboration defines interactions between business processes in terms
of message flows. A message flow defines the flow of a message between two
participants, in which one participant sends the message and another
participant receives the message. A message flow can only be specified
across business processes, i.e., a message flow cannot be specified between
tasks, activities, or sub-processes of the same business process.

A message flow represents a message-passing interaction mechanism.
Figure 2-11 depicts an example of an interaction between a sender and
receiver for sending a message.

A choreography defines the coordination of interactions between
participants in terms of choreography activities and their ordering relations. A
choreography activity represents an interaction or message exchanges
between two or more participants. A choreography activity can be
decomposed into sub-activities.

Figure 2-12 depicts the interactions between a distributor, retailer, and
shipper as a choreography that consists of two choreography activities stock
order and plan shipment. Activity stock order involves two participants, i.e., the
distributor and retailer. The retailer initiates this activity. The initating
participant is indicated by the white band on which the participant name is
specified. Activity plan shipment involves three participants, i.e., the
distributor, retailer, and shipper.

Stock order

Distributor

Retailer

Plan shipment

Distributor

Retailer
Shipper

The messages that are exchanged in a choreography activity can be
specified, as depicted in Figure 2-13(i). This choreography activity
represents the message flows in the collaboration in Figure 2-13(ii).

Figure 2-11
Sending a message from
a sender to a receiver

Figure 2-12
A choreography between
a distributor, retailer,
and shipper

 SUITABILITY ANALYSIS 29

A conversation represents a group of related message exchanges between
two or more participants. A conversation can be decomposed into sub-
conversations.

Figure 2-14(i) depicts a conversation between a distributor, retailer, and
shipper to plan the shipment of ordered products. This conversation
represents a set of message flows in the collaboration in Figure 2-14(ii).

Suitability
The suitability analysis of the BPMN interaction design concepts to model
abstract interactions is as follows.
– SR1: A message flow is performed by two participants only, i.e., a sender

and receiver. A designer cannot model an interaction between three or
more participants.
With a choreography activity or conversation, a designer can model an
interaction between two or more participants.

– SR2: In a message flow, the participants see the same message between
them. They have the same view on the established result. A designer
cannot define different views for different participants.

Figure 2-13
A choreography activity
and a collaboration that
is represented by that
choreography activity

Figure 2-14
A collaboration is
represented by a
conversation

30 CHAPTER 2 ANALYSIS OF INTERACTION DESIGN CONCEPTS AND METHODS

In a choreography activity or conversation between two participants, the
participants see the same messages between them. The participants have
the same view on the established result. A designer cannot define
different views for different participants.
In a choreography activity or conversation between three or more
participants, different participants see different messages. However, a
choreography activity or conversation has no property that allows a
designer to define the different messages for different participants.

– SR3: In a message flow, the relation between the participants’ views is
pre-defined. In a choreography activity or conversation between two
participants, the relation between the participants’ views is also pre-
defined. A designer cannot specify the relation between the participants’
views.
In a choreography activity or conversation between three or more
participants, there is no interaction property that allows a designer to
specify the relation between the different messages for different
participants.

– SR4: A message flow, choreography activity, and conversation have no
property that allows a designer to specify the participants’ requirements.

The BPMN interaction design concepts does not satisfy all the suitability
requirements.

Design methods
BPMN is used in the design methods in [32, 41, 143]. These design
methods use message flows only. To our knowledge, no design method for
service compositions uses the BPMN choreography activity and
conversation yet.

[32] defines four deliverables in different types of models: choreography
milestone, choreography scenario, choreography, and provider behaviour. A
choreography milestone model specifies the milestones in a collaboration.
No interaction is defined in this model. A choreography scenario model
specifies a possible conversation scenario between participants from one
milestone to another milestone. A choreography model represents all
interactions between participants. A provider behaviour model of a
participant specifies all interactions in which that participant is involved.
This model can also show internal activities of that participant.

Different deliverables represent different concerns on a service
composition. They do not represent abstraction levels, but we can derive
the abstraction-refinement relationships between the deliverables. A
choreography scenario model is a refinement of a choreography milestone
model. A provider behaviour model is a refinement of the internal
behaviour of a participant in a choreography scenario model. A
choreography model is an abstraction of a choreography scenario model.

 SUITABILITY ANALYSIS 31

However, since all interactions are specified as message flows, those
abstraction levels cannot bridge the conceptual gap between the business
and software domains. This design method cannot help a designer to
manage the complexity of an interaction design.

[41] uses the BPMN process types to represent abstraction levels:
collaboration (global) process, abstract (public) process, and private (internal) process.
A collaboration process specifies interactions between participants,
abstracting from the internal activities of those participants. An abstract
process specifies the participants and their interaction activities. A private
process specifies internal behaviour of a participant. It can contain sub-
processes; each of which is to be refined into activities or tasks.

All interactions are specified as message flows. Similar to [32], the
abstraction levels cannot bridge the conceptual gap between the business
and software domains. This design method cannot help a designer to
manage the complexity of an interaction design.

[143] models a service composition as the internal behaviour of the
coordinator of an orchestration. This design method does not distinguish
any abstraction level. Hence, it cannot bridge the conceptual gap between
the business and software domains. It cannot help a designer to manage the
complexity of an interaction design.

2.4.3 Petri Nets

Petri Nets is a formal/mathematical modelling language for analysing
distributed systems. It consists of two basic concepts: places and transitions,
which represent a state and an activity of a system, respectively. Control flows
between activities can be specified by directional relations between
transitions and places.

Petri Nets do not have an interaction design concept. To model an
interaction, a design method typically uses a pair of transitions connected
via a place as depicted in Figure 2-15. One transition represents an activity
for sending a message and another transition represents an activity for
receiving the message. An interaction that is modelled in this way represents
a message-passing interaction mechanism.

Figure 2-15
Modelling message
passing in Petri Net

32 CHAPTER 2 ANALYSIS OF INTERACTION DESIGN CONCEPTS AND METHODS

Suitability
A transition represents an activity in general, not an interaction. Petri Nets
do not have an interaction design concept, thus we cannot analyse their
suitability.

A designer may use hierarchical Petri Nets [45] for modelling abstract
interactions. Figure 2-16 depicts the abstraction of the interaction in Figure
2-15. In this example, a transition is used to represent an interaction. This
representation allows a designer to model an interaction between two or
more participants and, therefore, satisifies requirement SR1. However, it
does not satisfy requirements SR2, SR3, and SR4 because Petri Nets cannot
specify the result that should be established in an interaction.

Design methods
Petri Nets are used in the design methods in [33, 51, 76].

[33] defines four viewpoints from which a service composition can be
described: choreography viewpoint, interface behaviour viewpoint, provider behaviour
viewpoint, and orchestration viewpoint. A choreography viewpoint describes a
collaboration between participants. It shows only the activities that are used
in the collaboration, i.e., the send and receive activities as depicted in
Figure 2-15. An interface behaviour viewpoint describes the observable
behaviour of a role played by a participant to interact with another
participant. A provider behaviour viewpoint describes the observable
behaviour of a participant in a collaboration. If a participant plays multiple
roles, its provider behaviour is a composition of the interface behaviour
viewpoints that describe those roles. An orchestration viewpoint describes
the internal behaviour of the coordinator of an orchestration. The relations
between viewpoints are defined as follows. A participant in a choreography
can be refined into a provider behaviour. A provider behaviour of a
participant can be refined into an orchestration.

The relations between viewpoints lead us to associate the viewpoints
with the following successive abstraction levels: choreography, provider
behaviour, and orchestration. However, since all interactions are specified
as message passings, those abstraction levels cannot bridge the conceptual
gap between the business and software domains. This design method
cannot help a designer to manage the complexity of an interaction design.

Figure 2-16
Message passing as a
transition

 SUITABILITY ANALYSIS 33

[51, 76] do not distinguish any abstraction level. A service composition
is represented in terms of message exchanges between participants. The
internal activities of the participants are specified in the same model. These
design methods cannot bridge the conceptual gap between the business and
software domains. They cannot help a designer to manage the complexity of
an interaction design.

2.4.4 Let’s Dance

Let’s Dance is a design language for modelling service behaviours. An
interaction between participants or actors is described in terms of a
message exchange. One actor performs a communication action called a
message sending action; another actor performs a communication action called
a message receipt action. Two types of message exchanges are distinguished:
send without acknowledgement and send with acknowledgement, as depicted in
Figure 2-17 and Figure 2-18, respectively. In these figures, actor Sender
performs a message sending action and actor Receiver performs a message
receipt action. An interaction is modelled by two complementary
communication actions that are connected to each other.

Message passing without acknowledgement represents an unconfirmed
message-passing interaction mechanism. Message passing with
acknowledgement represents a provider-confirmed message-passing
interaction mechanism.

Suitability analysis
The suitability analysis of the Let’s Dance interaction design concepts to
model abstract interactions is as follows.
– SR1: A message passing is performed by two participants only, i.e., a

sender and a receiver. A designer cannot model an interaction between
three or more participants.

Figure 2-17
Send without
acknowledgement

Figure 2-18
Send with
acknowledgement

34 CHAPTER 2 ANALYSIS OF INTERACTION DESIGN CONCEPTS AND METHODS

– SR2: The participants see the same message between them. They have
the same view on the established result. A designer cannot define
different views for different participants.

– SR3: The relation between the participants’ views is pre-defined, i.e., all
participants have the same view. A designer cannot specify the relation
between the participants’ views.

– SR4: A communication action has no property that allows a designer to
specify the participants’ requirements.

The Let’s Dance interaction design concept does not satisfy all the
suitability requirements.

Design method
Let’s Dance is used in the design method in [145]. The design method
defines two views: global view and local view. The global view of a service
composition shows a choreography model between participants. The local
view of a participant is obtained by taking the communication actions of
that participant from the choreography model in the global view. This
method does not distinguish any abstraction level. It cannot bridge the
conceptual gap between the business and software domains. It cannot help
a designer to manage the complexity of an interaction design.

2.4.5 ISDL

ISDL (Interaction Systems Design Language) is a design language for
modelling distributed systems. It was developed based on the experiences
with the use of LOTOS (Language Of Temporal Ordering Specification [24,
59]) [44], while the development of LOTOS itself was based on earlier
research on the interaction concept. The dynamic part of the behavioural
model in LOTOS is derived from the process algebras of CCS (Calculus of
Communicating Systems [82]) and CSP (Communicating Sequential
Processes [53]). Since then, several ideas for improving ISDL have been
suggested in, and beyond, our research group, including some ideas
elaborated in this thesis. Most of these ideas, though, have not been
formalised yet. For these reasons, our analysis in this section is based on the
formulation of the ISDL interaction concept as available in the literature.

In ISDL, an interaction is defined as a unit of activity that is performed by
two or more participants in cooperation to establish a common result. A
result is represented by a set of values. Participants’ requirements are
specified as constraints that are imposed on that result.

An interaction is considered atomic in the sense that it either occurs or
does not occur at all, when used in a specification at a certain abstraction
level. If an interaction occurs, it establishes the same set of values
representing the result. These values are available from the same time

 SUITABILITY ANALYSIS 35

moment and at the same location for all participants. The ISDL interaction
design concept adopts a synchronous interaction model, requiring
participants to be involved in an interaction simultaneously.

Figure 2-19 depicts the purchase interaction of a car between two
participants: a buyer and seller. When this interaction occurs, it establishes
the same value for the car and the same value for the price in the buyer and
seller that are available from the same time moment and at the same
location.

Suitability
The suitability analysis of the ISDL interaction design concept to model
abstract interactions is as follows.
– SR1: A designer can model an interaction between two, three, or more

participants.
– SR2: The participants have the same view on the established result. A

designer cannot define different views for different participants.
– SR3: The relation between the participants’ views is pre-defined, i.e., all

participants have the same view. A designer cannot specify the relation
between the participants’ views.

– SR4: A designer can specify the participant’s requirements as constraints
that are imposed on the interaction result.

The ISDL interaction design concept does not satisfy all the suitability
requirements.

Design methods
ISDL is used in the design methods in [108, 113].

[108] defines four abstraction levels: business process specification,
application service specification, application service design, and application service
implementation. A business process specification defines activities in a service
composition, abstracting from possible assignments of the activities to
individual entities. An application service specification defines entities that
are involved in a service composition. It identifies which activities should be
performed by which individual entities and which activities should be
performed by the entities in cooperation. The business process specification
is decomposed accordingly. An activity that is to be performed in
cooperation becomes an interaction. Figure 2-20 illustrates the

Figure 2-19
A purchase interaction
between a buyer and
seller

36 CHAPTER 2 ANALYSIS OF INTERACTION DESIGN CONCEPTS AND METHODS

decomposition of a business process into application services. An
application service design specifies a participant in terms of a composition
of sub-entities. An application service implementation specifies the
implementation of an application service design with a specific service
technology or platform.

An interaction is defined as a refinement of an activity in a business
process specification. Once an interaction between participants is defined
(at the application service specification level), the interaction is not further
refined. The interaction design between participants is defined only at that
abstraction level. The abstraction levels cannot bridge the conceptual gap
between the business and software domains. This design method cannot
help a designer to manage the complexity of an interaction design.

[113] defines three generic abstraction levels: single interaction,
choreography, and orchestration. At the abstraction level of a single interaction,
a service composition is modelled as a single interaction between
participants. This interaction specifies the goal of the service composition.
It is refined into a structure of interactions between the participants at the
choreography level. An interaction at the choreography level can be further
refined into a structure of interactions. A participant is refined into a
composition of sub-entities at the orchestration level.

Interactions are designed at related abstraction levels. The design
method can bridge the conceptual gap between the business and software
domains. It can help a designer to manage the complexity of an interaction
design. However, the synchronous interaction model that is adopted by the
ISDL interaction concept limits possible interaction refinements. A
designer can only define direct interactions between participants because
participants have to be involved in an interaction simultaneously. Since all
participants have the same view on the established result, a designer cannot
include a participant that has partial interest on the result, e.g., a facilitating
participant.

2.4.6 Summary

We summarise our analysis as follows.

Figure 2-20
Decomposition of a
business process into
application service
designs

 SUITABILITY ANALYSIS 37

Interaction design concepts
Table 2-1 summarises the results of our suitability analysis. We consider the
suitablity of the interaction design concept only based on our specific
requirements and not based on suitability for other purposes.

Suitability requirements Language and
interaction design concept SR1 SR2 SR3 SR4

UML: signal passing – – – –
UML: operation call – – – –
UML: use-case + – – –
BPMN: message flow – – – –
BPMN: choreography activity + – – –
BPMN: conversation + – – –
Petri Nets N/A N/A N/A N/A
Let’s Dance – – – –
ISDL + – – +
Legend:
+
–

N/A

: satisfied
: not satisfied
: not applicable (Petri Nets does not have any interaction design concept)

A designer can use comments or other textual notation to add design

properties that are not provided by an interaction design concept.
Comments or other textual notation is an informal way to specify a design.
We do not include them in the analysis.

An interaction design concept that is suitable for modelling abstract
interactions would satisfy all the suitability requirements. From Table 2-1,
we observe that the ISDL interaction concept is the closest one to a suitable
interaction design concept. Therefore, we take the ISDL interaction
concept as a basis for our interaction design concept and enhance it in
order to make it satisfy all the suitability requirements.

Design methods
The design methods in [32, 33, 41, 65, 81, 108] distinguish related
abstraction levels. However, the interaction design concepts that they use
force a designer to define interactions at an implementation level only.

Except for [108, 113], the design methods that distinguish related
abstraction levels do not provide a mechanism to assess the conformance
between designs at different abstraction levels. Without such conformance
assessment, the correctness relation between interaction designs cannot be
established.

Table 2-1
Results of our suitability
analysis

38 CHAPTER 2 ANALYSIS OF INTERACTION DESIGN CONCEPTS AND METHODS

2.5 Examples of interaction designs

In this section, we design the service composition in the motivating
example in Section 2.3.2 in two interaction designs. The first interaction
design is developed by using an interaction design concept that can only
model concrete interactions. It aims at showing that such an interaction
design concept cannot help a designer to manage the complexity of the
interaction design at related abstraction levels. The second interaction
design is developed by using an interaction design concept that can model
abstract interactions. It aims at giving an outlook for a design method that
allows a designer to model interactions at related abstraction levels.

In the service composition, we identify the buyer and seller as the
essential participants; and the bank and courier as supporting participants.
An essential participant is a participant without which a service composition
cannot occur. A supporting participant is a participant that facilitates
interactions between the esential participants. It can be an intermediary or
facilitating participant. A supporting participant may be removed if it is not
used; or substituted with other supporting participant(s).

2.5.1 Interaction design using concrete interactions

We use the BPMN message flow to design a service composition for the
following reasons.
– The BPMN message flow represents a message-passing mechanism.
– BPMN supports abstraction levels by providing the concepts of abstract

processes and sub-processes. An abstract process represents a business
process abstracting from its internal behaviour. A sub-process represents
a composition of sub-actitivies of a business process as a single activity.
Hence, we can show the use of the BPMN message flow at related
abstraction levels.

We follow the design method in [41] for designing our motivating

example in Section 2.3.2. Firstly, we design the service composition as a
collaboration process, as depicted in Figure 2-21. The design shows the
message flows between the participants. All participants, i.e., the essential
and the supporting participants, and all message flows have to be specified
in the design.

 EXAMPLES OF INTERACTION DESIGNS 39

A message flow cannot represent multiple related message flows in
different directions. A request-response interaction mechanism must be
modelled as two message flows. One message flow is for sending the request
and another message flow in the opposite direction is for sending the
response. Interactions 1, 4, 6, and 8 in Figure 2-3 are to be implemented
using a request-response interaction mechanism. Each of those interactions
is therefore modelled as two message flows in opposite directions, e.g.,
message flows 1a and 1b.

Abstracting from the bank as a facilitating participant and the courier as
an intemediary, will remove message flows numbered with 4, 5, 6, 7, 8, 9,
and 10 as depicted in Figure 2-22. This would leave the design incomplete
and unclear. Questions may arise. For example, does the buyer have to pay
the invoice before sending a payment notification to the seller (message
flow no. 5)? Does the buyer get the purchased article?

Secondly, we refine the collaboration process by modelling the phases of
the purchasing. We model those phases as collapsed sub-processes within
the participants’ processes. The collapsed sub-processes are selection,
payment and delivery, as depicted in Figure 2-23. The numbers of message
flows correspond to the numbers of message flows in Figure 2-21.

Figure 2-21
The purchase scenario
as interacting abstract
processs

Figure 2-22
Abstracting from the
bank and courier

40 CHAPTER 2 ANALYSIS OF INTERACTION DESIGN CONCEPTS AND METHODS

Courier

Delivery

Bank

Payment

SellerBuyer

Payment

+

Selection

+

Selection

+

Payment

+

Delivery

+

Delivery

+

+

+

1a

1b

2

3

4a

4b

6a

6b

5

7

8a

6b

9

10

Finally, we refine the design to model the internal behaviour of the
phases in the participants. We expand the sub-processes with activities as
depicted in Figure 2-24. We consider this design as a design at an
implementation level.

This example shows that, although we can model the participants’
behaviours at a higher abstraction level (Figure 2-21 and Figure 2-23), the
BPMN message flow forces us to specify the interactions between the
participants at an implementation level. Abstractions are applicable only for
modelling the internal behaviour of the participants. The BPMN message
flow does not allow us to abstract a structure of related interactions into a
single abstract interaction.

The BPMN message flow does not allow us to abstract from supporting
participants. The introduction of the behaviour of supporting participants
increases the complexity of an interaction design at the early phases of a
design process.

Figure 2-23
Phases of the
purchasing are
represented as
collapsed sub-
processes

 EXAMPLES OF INTERACTION DESIGNS 41

Courier

Delivery

Bank

Payment

SellerBuyer

Payment

SelectionSelection

Request
catalogue

Order article

Reply
catalogue

Receive
order article

Payment

Receive
invoice

Order transfer

Send
invoice

Transfer money

Notify payment
Receive
payment

notification

Check account

Confirm
payment

Show balance

Receive
payment

confirmation

Delivery

Order delivery

Receive delivery
confirmation

Accept
delivery order

Deliver article

Delivery

Receive article 14

1a

1b

2

3

4a

4b

5

7

9

Confirm delivery

6a

6b

8a

8b

10

2.5.2 Interaction design using abstract interactions

We use ISDL to design a service composition because we will use the ISDL
interaction concept as a basis for our interaction design concept (see
Section 2.4.6).

At a higher abstraction level, the service composition is represented as
an abstract interaction between the essential participants, i.e., the buyer and
seller, as depicted in Figure 2-25. The design should specify the result to be

Figure 2-24
The service composition
for purchasing at an
implementation level

42 CHAPTER 2 ANALYSIS OF INTERACTION DESIGN CONCEPTS AND METHODS

established, the participants’ views on the result, the relations between the
participants’ views, and the participants’ requirements on the establishment
of the result.

We then refine this abstract interaction into a structure of interactions
that specifies how the service composition establishes the result. The
structure of interactions consists of interactions select, pay, and deliver that
are performed consecutively, as depicted in Figure 2-26.

We recursively refine each interaction in Figure 2-26 into a structure of
interactions, as depicted in Figure 2-27. Abstract interaction select is refined
into two interactions: browse catalog and order article. Abstract interaction pay
is refined into an interaction pay article that introduces a bank as a
facilitating participant. Abstract interaction deliver is refined into a structure
of interactions that introduces a courier as an intermediary.

This recursive refinement can be done until it results in interactions that
can be mapped onto available interaction mechanisms. Figure 2-28 is

Figure 2-25
A service composition
as an abstract interaction

Figure 2-26
A structure of
interactions (1)

Figure 2-27
A structure of
interactions (2)

 CONCLUDING REMARKS 43

obtained from refining abstract multilateral interaction pay article in Figure
2-27 into a structure of bilateral interactions.

Buyer Seller

browse catalog

order article

send invoice

Bank

Courier

deliver
article

order
delivery
confirm
delivery

order
transfer

check
balance

notify payment

confirm payment

In order to obtain a concrete interaction design that conforms to an
abstract interaction design, refinement should be followed by conformance
assessment.

2.6 Concluding remarks

In this chapter, we have analysed interaction design concepts and methods
for service compositions. The interaction design concepts are from UML,
BPMN, Let’s Dance, and ISDL. Most of the interaction design concepts
represent interaction mechanisms that are provided by communication
middleware. Such an interaction design concept forces a designer to
develop interaction designs at an implementation level.

We have also analysed how Petri Nets can be used to represent an
interaction, i.e., a message-passing mechanism. Such an interaction
represents a concrete interaction that cannot model abstract interactions.

Some of the analysed design methods define related abstraction levels.
However, they fail to manage the complexity of an interaction design,
because they are not supported by interaction design concepts that are
suitable for modelling abstract interactions.

Figure 2-28
A structure of
interactions (3)

44 CHAPTER 2 ANALYSIS OF INTERACTION DESIGN CONCEPTS AND METHODS

Requirements of an interaction design concept
We aim to define an interaction design concept that is suitable for
modelling interactions at related abstraction levels. We define the following
requirements for such an interaction design concept.
– An interaction design concept should be suitable for modelling abstract

interactions. The suitability requirements in Section 2.3.4 should be
satisified. The interaction design concept should allow a designer
– to model an interaction between two or more participants,
– to define different views of different participants on the established

result,
– to specify the relation between different views of different

participants, and
– to specify participants’ requirements directly.

– An interaction design concept should be suitable for modelling concrete
interactions. Such an interaction design concept should allow a designer
to model interaction mechanisms precisely, because an interaction
design is eventually realised by an application developer. A precise
interaction model avoids misinterpretation of an interaction design by
the application developers.

In Chapter 3, we discuss further the limitations of the ISDL interaction

design concept and propose the necessary enchancements. In Chapter 4, we
define transformations for designing interactions at related abstraction
levels. In Chapter 5, we show that the enhanced interaction concept is
suitable for modelling concrete interactions.

Chapter 3

3. Design concepts for interaction
modelling

Any artificial system, including a distributed application, is developed to
deliver a specific functionality. In order to deliver that functionality, a
system performs a certain behaviour. An external entity that wants to access
that functionality must interact with the system while itself exhibiting a
certain behaviour. Behaviour modelling, therefore, is necessary in system
design. As a distributed application is characterised by interactions between
application components, interaction modelling is essential in the behaviour
modelling of a distributed application.

This chapter presents design concepts in ISDL (Interaction System
Design Language [31, 44, 107, 110, 111, 130, 131]), especially for
behaviour modelling, and enhances the ISDL interaction concept. This
chapter is organised as follows: Section 3.1 gives an overview of basic design
concepts for modelling distributed systems. Section 3.2 presents
perspectives on distributed systems. Section 3.3 presents in more detail
design concepts for behaviour modelling. These three sections summarise
the current state-of-the-art of ISDL. The following sections present new
contributions. Section 3.4 shows the limitations of the ISDL interaction
concept for modelling abstract interactions. Section 3.5 enhances the ISDL
interaction concept to make it satisfy the suitability requirements defined in
Chapter 2. Section 3.6 describes the relationship between the action
concept and the enhanced interaction concept. Section 3.7 presents
shorthand notations for interaction specifications that appear frequently in
designs. Finally, Section 3.8 presents some concluding remarks.

46 CHAPTER 3 DESIGN CONCEPTS FOR INTERACTION MODELLING

3.1 Basic design concepts

A distributed system can be represented in two conceptual domains: the
entity domain and the behaviour domain.

3.1.1 Entity domain

In the entity domain, a distributed system is represented as a structure of
interconnected entities. Three basic design concepts are identified: entity,
interaction point, and action point.

Entity
An entity represents a logical or physical mechanism as a carrier of the
behaviour of a part of a distributed system or of the system as a whole. It
does not represent the behaviour itself. This behaviour has to be defined by
a separate behaviour specification. For example, a travel reservation
application can be represented by an entity whose behaviour specifies how
to help a customer in making a flight or hotel reservation. Alternative terms
to denote an entity are ‘component’, ‘object’, ‘module’, or ‘resource’. An
entity is uniquely identified by an entity identifier (entity name).

Interaction point
An interaction point represents a logical or physical mechanism through
which entities can interact. It does not represent the interactions
themselves. These interactions are defined by the behaviour specification of
the entity. An interaction point is shared between entities. This implies that
interacting entities can establish results to which these entities can refer. An
entity can access the functionality of another entity only through
interactions at one or more interaction points. For example, a series of web
pages displaying the steps to make a flight reservation is an interaction point
through which a customer can interact with a travel reservation application.
An entity can access the functionality of another entity only through their
interaction points. An alternative term to denote an interaction point is
‘connector’. An interaction point is uniquely identified by an interaction point
identifier (interaction point name).

Figure 3-1 depicts a model of a distributed system consisting of two

entities: a customer and travel reservation application, that interact with each
other through an interaction point ip. An entity is graphically expressed as a
box with cut-off corners. Its identifier is placed inside that box. An
interaction point is graphically expressed as an ellipse connecting entities
that share this interaction point. Its identifier is placed inside that ellipse.

 BASIC DESIGN CONCEPTS 47

Action point
During refinement, an entity can be decomposed into multiple internal
entities that are interconnected via internal interaction points. When
considering that entity as a whole, one may abstract from the internal
entities but keep the internal interaction points. In this case, internal
interaction points are called action points. An action point represents an
internal mechanism of an entity at which a result is established.

In Figure 3-2, a travel reservation application is refined by decomposing
it into four internal entities: a presentation component, coordinator, flight
reservation system, and hotel reservation system. These entities are interconnected
via internal interaction points p1, p2, and p3. Interaction point ip of the
original entity is maintained. One may consider this decomposed
application by abstracting from its internal entities. This leaves the
application with action points p1 and p2.

Of course, one can also define these internal action points directly,
avoiding the detour of defining the internal entities. However, a design
process is generally intended to define the internal entities.

An action point is uniquely identified by an action point identifier (action
point name). An action point is graphically expressed as an ellipse. Its
identifier is placed inside that ellipse.

Figure 3-1
Entities and interaction
points in a distributed
system

Figure 3-2
Refinement and
abstraction of a travel
reservation application

48 CHAPTER 3 DESIGN CONCEPTS FOR INTERACTION MODELLING

A model that represents a distributed system in the entity domain is
called an entity model.

3.1.2 Behaviour domain

In the behaviour domain, a distributed system is represented as a composition
of interacting behaviours. The system as a whole is represented as a single
behaviour that delivers the system’s functionality.

To define and specify a behaviour, three basic design concepts are
defined: action, interaction, and causality relation. These design concepts are
briefly introduced here and further elaborated in Section 3.3.

Action
A distributed system delivers its functionality by performing one or more
activities. An action represents a unit of activity that is performed by a single
entity to establish a result. A result is represented by the availability of a set
of information values at a certain moment in time and at a certain location.
In the example of a travel reservation application above, parsing a user
request into an operation request that is understandable to the coordinator
is an action of the presentation component. Formatting an operation result
into a response that is understandable to a user is another action.
Alternative terms to denote actions are ‘tasks’ or ‘internal activities’. An
action is uniquely identified by an action identifier (or action name).

Interaction
An interaction represents an action that is performed by multiple entities in
cooperation to establish a common result. For example, a customer
interacts with a travel reservation application to make a flight reservation.
The contribution of an entity in an interaction is called an interaction
contribution. For example, in an interaction for making a flight reservation, a
customer contributes by providing the departure place, destination place,
and preferred travel date; while the travel reservation application
contributes by providing a reserved flight to the customer. Alternative terms
to denote an interaction are ‘joint task’, ‘shared activity’, or ‘collaboration’.
An interaction is uniquely identified by an interaction identifier (interaction
name).

An action can also be seen as an integrated interaction where the
individual contributions of the entities are abstracted away.

Related actions and interaction contributions of an entity can be
grouped within a behaviour. A behaviour is uniquely identified by a behaviour
identifier (behaviour name).

Figure 3-3 depicts a model of a distributed application that consists of
activities for making a flight reservation. The activities are two actions, i.e.,

 BASIC DESIGN CONCEPTS 49

parse and format, and five interactions, i.e., request, response, reserve flight,
confirm flight, and reserve. An action is graphically expressed as an ellipse. Its
identifier is placed inside that ellipse. An interaction is graphically expressed
as segmented ellipses linked with a line. Its identifier is placed near that
line. A segmented ellipse represents an interaction contribution of a
participating entity. It has an interaction contribution identifier that is
unique within a behaviour.

Activities in Figure 3-3 are grouped in four sub-behaviours: customer,
presentation component, coordinator, and flight reservation system. A behaviour is
graphically expressed as a rounded rectangle. Its identifier is placed inside
that rounded rectangle. Actions are placed inside a behaviour in which they
are grouped. An interaction is shared between behaviours, such that one
interaction contribution is in one behaviour and other interaction
contribution(s) is in other behaviour(s).

Causality relation
A causality relation defines the condition for the occurrence of an individual
action and for the value of its result. For example, in Figure 3-3, a causality
relation between interaction request and action parse (which is graphically
expressed as an arrow) defines that action parse may occur only after
interaction request has occurred.

A model that represents a distributed system in the behaviour domain is

called a behaviour model. A design process of developing behaviour models is
called behaviour modelling.

3.1.3 Assignment relation

An assignment relation relates an entity and behaviour model of the same
system. This relation assigns a behaviour to an entity in order to define the
behaviour of that entity. This relation therefore indicates which entity
executes which behaviour.

In an assignment relation, the following consistency rules must be
complied with:
– An action of a behaviour happens at an action point of an entity to

which that behaviour is assigned.

Figure 3-3
Actions and interactions
for making a flight
reservation

50 CHAPTER 3 DESIGN CONCEPTS FOR INTERACTION MODELLING

– An interaction between behaviours happens at an interaction point that
is shared by entities to which those behaviours are assigned.

– Related actions and interaction contributions in a behaviour are assigned
to the same entity.

Figure 3-4 depicts an assignment relation between a behaviour and

entity model. Behaviours customer, presentation component, coordinator, and
flight reservation system are assigned to entities with the same names. Actions
parse and format are assigned to action points ap1 and ap2, respectively.
Interactions request and response are assigned to interaction point ip1.
Interaction reserve flight and confirm flight are assigned to interaction point p1.
Interaction reserve is assigned to interaction point p2.

Customer Presentation component Coordinator

Flight
reservation

system

Behaviour domain

Entity domain

ip1

ap1

ap2

p1 p2

Customer

req
request

rsp
response

CoordinatorPresentation component

parse

format

rsv rsvreq

reserve
flight

rsp

Flight
reservation

system

cnf cnf

confirm
flight

res res
reserve

3.2 System perspectives

A distributed system can be viewed from different perspectives. Three
perspectives are distinguished: distributed perspective, integrated perspective, and
external perspective.

Distributed perspective
A distributed system can be represented as a structure of interconnected
entities, and correspondingly, as a composition of interacting behaviours.
This representation is called the distributed perspective. Figure 3-5(i) depicts
the distributed perspective of a travel reservation application in the entity

Figure 3-4
Assignment relation

 SYSTEM PERSPECTIVES 51

domain. It shows the internal entities of the application and how the
entities are structured.

(i) distributed
perspective

(ii) integrated
perspective

(iii) external
perspective

Abstraction
(from action points)

abstraction
(from internal entities)

Coordinator

Flight
reservation

system

Hotel
reservation

system

p2

p3

Travel reservation application

ip

Travel reservation application

Presentation
component p1ip

p2

p3

p1

ip

Travel reservation application

Integrated perspective
A distributed system can also be represented as a single entity that performs
a specific behaviour, abstracting from its internal structure of entities or its
composition of behaviours. This representation is called the integrated
perspective. Figure 3-5(ii) depicts the integrated perspective of a travel
reservation application in the entity domain. It shows only the action points
in which activities of the application are performed.

The integrated perspective of a distributed system is at a higher
abstraction level than the distributed perspective since it abstracts from
internal entities and the distribution of system functionality into the
behaviours of internal entities.

External perspective
A distributed system can also be represented as an entity providing specific
functionality to its users, considering only the possible interactions between
the system and its users. This representation is called the external perspective.
Figure 3-5(iii) depicts the external perspective of a travel reservation

Figure 3-5
System perspectives

52 CHAPTER 3 DESIGN CONCEPTS FOR INTERACTION MODELLING

application in the entity domain. It shows only the interaction points of the
application. It does not show any internal detail of the application.

The external perspective of a distributed system is at a yet higher
abstraction level than the integrated perspective since it abstracts from the
any internal detail of the system. The external perspective defines what
should be provided by the system. The integrated and distributed
perspectives define in increasingly more detail how the system is
constructed.

Figure 3-5 depicts the relations between the distributed, integrated, and

external perspectives of a travel reservation application in the entity
domain. These relations are also applicable in the behaviour domain.

These perspectives, in a reversed order, are used as a basis for a top-
down design approach. Firstly, a distributed system is defined from the
external perspective. Secondly, the external perspective is refined into the
integrated perspective by making the system internally explicit. Finally, the
integrated perspective is refined into the distributed perspective by
distributing the system over its internal entities. Action points are then
transformed into interaction points.

In the behaviour domain, the term observable behaviour refers to the
external perspective of a system behaviour, because this perspective shows
only the behaviour that can be observed by the users. The term internal
behaviour refers to the integrated or distributed perspective of a system
behaviour, because these perspectives shows the internal actions and/or
interactions of that system.

Figure 3-6(i) depicts the observable behaviour of a travel reservation
application. A user can interact with this application using interaction
contributions req and rsp. These interaction contributions allow the user to
send a request to, and receive a response from, this application,
respectively. This behaviour only shows a direct mapping between
interactions and does not show the internal actions of the application to
produce a response.

Figure 3-6(ii) depicts the internal behaviour of the travel reservation
application. This internal behaviour shows that the application is composed
of two interacting behaviours coordinator and flight reservation system. This
behaviour shows the internal activities of the application to produce a
response.

 CONCEPTS FOR BEHAVIOUR MODELLING 53

3.3 Concepts for behaviour modelling

This section elaborates basic design concepts for behaviour modelling.

3.3.1 Action

An action represents a unit of activity that is performed by a single entity to
establish a result. A result is represented by three attributes:
– information attribute, which models a set of information values established

by the action;
– time attribute, which models the time moment from which the

information attribute is available;
– location attribute, which models the location at which the information

attribute is available.

An action is an abstraction of an activity that is considered as a unit of

behaviour at a certain abstraction level and cannot be split at this
abstraction level. An action, at this level, is hence defined as atomic.
However, an action can be replaced with a composition of multiple actions
at a lower abstraction level.

Since an action, at the considered abstraction level, is atomic, it implies
that its result either occurs in full or does not occur at all. The occurrence
of the result in full implies that the defined action occurs, while the non-
occurrence of the result implies that the defined action does not occur. If
an action occurs, other actions can refer to the action’s full result. If an
action does not occur, other actions cannot refer to any result.

Figure 3-7 depicts an action order for ordering a book in an online
bookstore. Its attributes are specified in a text box attached to the action.
Information, time, and location attribute values are expressed by the
symbols ι, τ, and λ, respectively. An attribute has a type (value domain) and
may have a constraint specifying the possible values that may be established

Figure 3-6
Observable and internal
behaviours

54 CHAPTER 3 DESIGN CONCEPTS FOR INTERACTION MODELLING

if the action occurs. An attribute type declaration and its constraint is
separated by the symbol ‘|’.

Information attribute value ι in Figure 3-7 has an information type Book
and its constraint allows only one specific value “Alice in Wonderland”.
Time attribute value τ is of type Time and its constraint allows any time
moment before 5th May 2010 12.00 hours. Location attribute value λ is of
type Bookstore and its constraint allows only one specific value
‘www.amazon.com’. If this action occurs, it results in the ordering of a
book “Alice in Wonderland” at a time moment before 5th May 2010 12.00
hours at an online bookstore ‘www.amazon.com’.

Figure 3-8 textually expresses the order action depicted in Figure 3-7.
An action is expressed by an action identifier followed by attribute type
declarations and constraints. Attribute type declarations are expressed
between the symbols ‘(’ and ‘)’. Constraints are expressed between the
symbols ‘[’ and ‘]’.

order (ι : Book, τ : Time, λ : Bookstore)

[ι = “Alice in Wonderland”,
τ < 05.05.2010 12.00h,
λ = www.amazon.com]

The information, time, and location attribute values of an action a can

be expressed as a.ι, a.τ, and a.λ, respectively.

3.3.2 Interaction

An interaction represents an action that is performed by multiple entities in
cooperation to establish a common result. Entities that are involved in an
interaction are called participants. Like an action result, an interaction result
is represented by information, time, and location attributes.

The contribution of a participant in an interaction is called an interaction
contribution. An interaction contribution defines constraints that a
participant has on the interaction result. An interaction can only occur if
the constraints of all participants can be satisfied. The result is established
through some form of cooperation or common activity of the participants.
Since all constraints have to be satisfied for the interaction to occur, we also
call this cooperation a “negotiation” between the participants. The

Figure 3-7
Action send

Figure 3-8
Textual expression of
Figure 3-7

 CONCEPTS FOR BEHAVIOUR MODELLING 55

interaction itself abstracts from how the negotiation is performed. When
the interaction occurs, a participant can refer to the established result only
through its interaction contribution.

An interaction, like an action, is considered and defined as atomic at a
certain abstraction level. This property imposes that an interaction’s result
either occurs in full for all participants or does not occur at all. If an
interaction occurs, all participants can refer to the interaction result. If an
interaction does not occur, none of the participants can refer to any result
However, an interaction can be replaced with multiple interactions at a
lower abstraction level.

Figure 3-9 depicts an interaction purchase between a buyer and seller for
purchasing a computer. The interaction contributions of the buyer and
seller are ‘to buy’ and ‘to sell’, respectively. The buyer has constraints that
the price should be between 400 and 700 euro; and the purchase should be
done before 22nd January 2010. The buyer has no constraint on the shop at
which he should buy the computer. The seller has a constraint that the
price should be higher than 500 euro; and that the purchase should occur
at his shop ‘www.mystore.nl’. The seller has no constraint on the purchase
date. If this interaction occurs, it results in the purchase of a computer with
a price between 500 and 700 euro before 22nd January 2010 at
‘www.mystore.nl’.

Figure 3-10 textually expresses a purchase interaction depicted in
Figure 3-9. The interaction contribution buy is considered as part of the
behaviour Buyer. The behaviour Buyer is expressed by its behaviour identifier
Buyer followed by the symbol ‘=’ and its behaviour definition. A behaviour
definition is delimited by the symbols ‘{’ and ‘}’. Interaction contributions
(contribution buy in behaviour Buyer) are expressed in the same way as
expressing actions, i.e., interaction contribution identifier, attribute type
declarations, and constraints. An interaction is expressed by its identifier
followed by a list of interaction contributions involved in the interaction,
delimited by the symbols ‘(’ and ‘)’. An interaction definition is only
completed when all its interaction contributions are defined. Since an
information attribute consists of a set of values, indexes (in subscripts) are
used to enumerate the values, e.g., ι1 and ι2. This index can be omitted in
case an information attribute consists of a single value.

Figure 3-9
Interaction purchase
between a buyer and
seller

56 CHAPTER 3 DESIGN CONCEPTS FOR INTERACTION MODELLING

Buyer = {

buy (ι1 : Item, ι2 : Euro, τ : Date, λ : Shop)
[ι1 = Computer,
400 < ι2 < 700,
τ < 22.01.2010]

}

Seller = {

sell (ι1 : Item, ι2 : Euro, τ : Date, λ : Shop)
[ι1 = Computer,
ι2 > 700,
λ = www.mystore.nl]

}

purchase (buy : Buyer.buy, sell : Seller.sell)

Attribute value establishment
Three frequently occurring forms of attribute value establishment in an
interaction between two participants are listed in Table 3-1 [128].

Form Description Condition for

occurrence

Value checking One participant requires a specific value x to be
established and the other participant requires a
specific value y to be established.

x = y

Value passing One participant requires a specific value x to be
established and the other participant allows any
value from a set of values Y to be established.

x ∈ Y

Value generation One participant allows any value from a set of
values X to be established and the other
participant allows any value from a set of values Y
to be established.

X ∩ Y ≠ ∅

Other forms of attribute value establishment are possible. For example,

an auction is an interaction in which all participants bid for an offered item.
A bid represents a participant’s constraint on the acceptable value of the
item. When the auction occurs, it establishes a value that is equal to the
highest bid.

Integrated interaction
When moving from the distributed perspective to the integrated
perspective, one abstracts from the individual interaction contributions of

Figure 3-10
Textual expression of
Figure 3-9

Table 3-1
Frequently occurring
forms of attribute value
establishment

 CONCEPTS FOR BEHAVIOUR MODELLING 57

the participants. This results in an integrated interaction that is modelled as an
action.

Figure 3-11 depicts an action purchase as an abstraction of an interaction
purchase in Figure 3-9. The attribute constraints of action purchase are the
intersections of the domains defined by the attribute constraints of the
interaction contributions of interaction purchase. Interaction contributions
buy and sell in Figure 3-9 define constraints [400 < ι2 < 700] and [ι2 >
500], respectively. The intersection of these two constraints is a constraint
[500 < ι2 < 700].

An interaction is considered as a refinement of an action, i.e. it defines
an action at a lower abstraction level. An interaction defines the distribution
of responsibilities between multiple entities in the establishment of a result.
Rules that are applicable to actions, e.g., as presented later in Section 3.3.3,
are also applicable to interactions.

3.3.3 Causality relation

A causality relation defines the condition for the occurrence of an individual
action and the value of its attributes. A causality relation consists of a
causality target, causality condition, and uncertainty attribute as depicted in Figure
3-12.

Causality target
A causality target is an action or interaction contribution for which a causality
condition is specified. For brevity, we use in the sequel the term action to
denote an action as well as an interaction contribution.

Causality condition
A causality condition defines the dependency of the occurrence of a causality
target on the occurrence or non-occurrence of other actions. Four basic

Figure 3-11
Action purchase as an
integrated interaction of
an interaction purchase

Figure 3-12
Causality relation

58 CHAPTER 3 DESIGN CONCEPTS FOR INTERACTION MODELLING

causality conditions are identified (as depicted in Figure 3-13 and textually
in Table 3-2):
– start condition: action a is enabled to occur from the beginning (start).

This start condition for action a is actually no more than a placeholder for
another, yet undefined causality condition in another behaviour that
enables a.

– enabling condition: the occurrence of action b enables the occurrence of
action a. When actions a and b both occur, a.τ > b.τ. Action a can refer
to the result of action b.

– disabling condition: the occurrence of action b disables the occurrence of
action a if action a has not yet occurred before action b. When actions a
and b both occur, then a.τ < b.τ. Action a can never refer to the result
of action b because if action a occurs, either action b does not occur or
action b occurs after action a occurs.

– synchronisation condition: the occurrence of action b enables the
occurrence of action a, such that action a occurs at the same time as
action b. When actions a and b both occur, a.τ = b.τ. Action a can refer
to the result of action b.

Causality condition Textual expression

Start condition √ → a
Enabling condition b → a
Disabling condition ¬b → a
Synchronisation condition =b → a

More complex causality conditions can be modelled by combining these

basic causality conditions into
– a conjunction: all causality conditions must be satisfied to enable the

occurrence of a target action. A conjunction is defined using the and-
operator (∧);

– a disjunction: at least one causality condition must be satisfied to enable
the occurrence of a target action. A disjunction is defined using the or-
operator (∨). The target action can refer to the attribute values of only
one of the causality conditions;

– a combination of conjunctions and/or disjunctions.

Figure 3-14 depicts examples of conjunction and disjunction.

Figure 3-13
Basic causality
conditions

Table 3-2
Textual expressions of
basic causality
conditions

 CONCEPTS FOR BEHAVIOUR MODELLING 59

In Figure 3-14(i), the occurrence of action a depends on the
occurrences of actions b and c. The and-operator is graphically expressed by
a small black box (the symbol). This symbol can be omitted as in Figure
3-14(ii) without changing the causality condition of action a. In Figure
3-14(iii), the occurrence of action a depends on the occurrence of action b
or the occurrence of action c. The or-operator is graphically expressed by a
small white box (the symbol). These behaviours are textually expressed
in Figure 3-15.

B1 = {b ∧ c → a}
B2 = {b ∧ c → a}
B3 = {b ∨ c → a}

The and-operator and or-operator have properties as listed in Table 3-3.

Both operators have commutativity and associativity properties. The and-
operator can be distributed over the or-operator, while the inverse does not
hold.

Property and-operator or-operator

Commutativity a ∧ b = b ∧ a a ∨ b = b ∨ a
Associativity (a ∧ b) ∧ c = a ∧ (b ∧ c) (a ∨ b) ∨ c = a ∨ (b ∨ c)
Distributivity a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) -

A causality condition of a causality target can be constructed as a

disjunctive normal form of alternative causality conditions using those
properties. An alternative causality condition defines a necessary and sufficient
condition for the causality target to occur. An alternative causality condition
can be a basic causality condition or a conjunction of basic causality
conditions. For example, the causality condition of an action a can be C =
C1 ∨ C2 ∨ C3, where C is the causality condition of action a and Ci (i = 1,
2, 3) are basic causality conditions or conjunctions of basic causality
conditions. Ci is an alternative causality condition of action a.

Uncertainty attribute
An uncertainty attribute defines the probability of the occurrence of a causality
target when its causality condition is satisfied. It can be

Figure 3-14
Conjunction and
disjunction

Figure 3-15
Textual expressions of
Figure 3-14

Table 3-3
Properties of and-
operator and or-operator

60 CHAPTER 3 DESIGN CONCEPTS FOR INTERACTION MODELLING

– a must: the causality target must occur when the associated condition is
satisfied;

– a may: the causality target may occur when the associated condition is
satisfied.

Figure 3-16 depicts examples of uncertainty attributes. Action b may

occur from the start. If action b occurs, then action a must occur.
Uncertainty attributes may and must are respectively expressed by symbols
‘?’ and ‘!’ attached to the associated causality condition. These symbols are
textually expressed as subscripts of the associated causality conditions as
depicted in Figure 3-17. When a causality condition is not explicitly
associated with an uncertainty attribute, it is assumed to have a must
uncertainty attribute.

B = {
√? → b,
b! → a

}

Constraints
Constraints may be added to a causality relation to specify extra conditions
on the occurrence of a causality target or on the established values. A
constraint can be a causality constraint or attribute constraints.

A causality constraint defines the dependency of the occurrence of a
causality target on the attribute values that are established by actions in the
causality condition. In Figure 3-18, the occurrence of action a does not
only depends on the occurrences of actions b and c, but also on the
attribute values b.ι and c.ι. Action a can only occur if actions b and c occur,
and b.ι > c.ι. The constraint [b.ι > c.ι] is a causality constraint. Causality
constraints are textually expressed before the arrow symbols as shown in
Figure 3-19. Information type N represents natural numbers.

An attribute constraint defines a restriction on the attribute values that can
be established in a causality target. If this constraint cannot be satisfied, the
causality target cannot occur. In Figure 3-18, the constraint [b.ι + c.ι =
a.ι < 100] of action a is an attribute constraint. An attribute constraint may
refer to attribute values that have been established by actions in the causality
condition, e.g., [a.ι = b.ι + c.ι], or to specific independent values, e.g.,

Figure 3-16
Uncertainty attributes

Figure 3-17
Textual expression of
Figure 3-16

 CONCEPTS FOR BEHAVIOUR MODELLING 61

[a.ι < 100]. Constraints mentioned in Sections 3.3.1 and 3.3.2 are
attribute constraints.

B = {
√ → b (ι : N),
√ → c (ι : N),
b ∧ c [b.ι > c.ι] → a (ι : N) [b.ι + c.ι = ι < 100]

}

3.3.4 Behaviour and sub-behaviours

A behaviour can be structured into sub-behaviours. In a structured
behaviour, a causality target in one sub-behaviour may have a causality
condition in another sub-behaviour(s). The notations of entry and exit
points are used to allow causality relations with causality conditions and
causality targets in different behaviours.

An entry point in a behaviour represents a causality condition involving
actions from other behaviours. An entry point in a behaviour can be used to
define (part of) causality condition of a causality target in that behaviour.

An exit point in a behaviour represents a causality condition involving
actions of that behaviour. An exit point in a behaviour can be used to define
(part of) causality condition of a causality target in other behaviours.

Causality relations between causality conditions and causality targets in
different behaviours can be defined by connecting entry and exit points of
those behaviours.

Figure 3-20 illustrates a behaviour B that is structured into two sub-
behaviours B1 and B2. Entry and exit points are graphically expressed by
small triangles pointing inside and outside of a behaviour, respectively. An
entry or exit point has an identifier that is unique within a behaviour. We
use natural numbers as identifiers for entry and exit points. Behaviour B is
called the super behaviour of behaviours B1 and B2.

Figure 3-21 textually expresses a structured behaviour B in Figure 3-20.
An entry and exit points are expressed with keyword ‘entry’ and ‘exit’,
respectively, appended with their identifiers.

Figure 3-18
Causality constraint and
attribute constraint

Figure 3-19
Textual expression of
Figure 3-18

62 CHAPTER 3 DESIGN CONCEPTS FOR INTERACTION MODELLING

B = {

√ → B1.entry1,
B1.exit1 → B2.entry1,
B1.exit2 → B2.entry2

}

B1= {

entry1 → a,
a → b,
b → exit1,
a → c,
c → exit2

}

B2= {
entry1 ∨ entry2 → d

}

Parameterised entry and exit points
An entry or exit point can be parameterised to pass information, time, or
location attribute values from one behaviour to another behaviour. Figure
3-22 depicts parameterised entry and exit points and their value
assignments. Parameter v of entry point B1.entry1 is assigned with
information attribute values of action a. It allows action b to indirectly refer
to information attribute value of action a. Parameters v1 and v2 of exit point
B1.exit1 are assigned with information and time attribute values of action b,
respectively. Parameters v1 and v2 of entry point B2.entry1 are assigned with
parameter values v1 and v2 of exit point B1.exit1, respectively. Figure 3-23
textually expresses these parameterised entry and exit points and their value
assignments. Parameter value assignments of an entry point are specified in

Figure 3-20
Behaviour B is
structured into sub-
behaviours B1 and B2

Figure 3-21
Textual expression of
Figure 3-20

 CONCEPTS FOR BEHAVIOUR MODELLING 63

the super behaviour. Parameter value assignments of an exit point are
specified in the behaviour that defines the associated entry point.

B = {
√ → a,
a → B1.entry1

[v = a.ι],
B1.exit1 → B2.entry1

[v1 = B1.exit1.v1,
v2 = B1.exit.v2]

}

B1= {

entry1 (v : I) → b,
b → exit1 (v1 : I, v2 : T)

[v1 = b.ι,
v2 = b.τ]

}

B2= {
entry1 (v1: I, v2 : T) → c

}

Behaviour instantiations
A behaviour definition can be used to provide a template to create
behaviour instances. A structured behaviour, thus, can possibly define the
instantiation of sub-behaviours, i.e., the creation of sub-behaviour
instances. Figure 3-24(i) depicts a behaviour definition B1. In Figure
3-24(ii), behaviour B1 is instantiated multiple times in a structured
behaviour B2. A unique identifier is necessary to distinguish between
behaviour instances. A natural number in superscript is used as a behaviour
instance identifier, e.g., B11, B12, and B13. This identifier can be omitted if
a behaviour definition is instantiated only once in a super behaviour, as in
Figure 3-22.

Figure 3-22
Parameters and
parameter value
assignments

Figure 3-23
Textual expression of
Figure 3-22

64 CHAPTER 3 DESIGN CONCEPTS FOR INTERACTION MODELLING

A behaviour may define instantiation(s) of itself. This instantiation is
called recursive behaviour instantiation. Figure 3-25 and Figure 3-26 depicts
graphical and textual expressions, respectively, of behaviour B that contains
recursive behaviour instantiation.

B = {
entry1 → a,
a → B.entry1

}

Delegated interaction contributions
The contribution of an entity in an interaction may be delegated to a sub-
entity. The interaction contribution for that interaction is hence defined in
the sub-entity’s behaviour; not in the entity’s behaviour. For this purpose,
the entity’s behaviour should contain a delegated interaction contribution. This
notation allows one to define an interaction between the entity and other
entitie(s).

Figure 3-27 depicts an interaction p between behaviours B1 and B2.
Behaviour B1 delegates its contribution to interaction p to its sub-behaviour
B1a. A delegated interaction contribution is graphically expressed as a grey
segmented ellipse that is connected to an interaction contribution of a sub-
behaviour to which the contribution is delegated. Textually, a keyword
‘delegated’ indicates that constrains between symbols ‘[’ and ‘]’ following
that keyword is a delegated interaction contribution, as depicted in Figure
3-28.

Figure 3-24
Behaviour instantiation

Figure 3-25
Recursive behaviour
instantiation

Figure 3-26
Textual expression of
Figure 3-25

 CONCEPTS FOR BEHAVIOUR MODELLING 65

B1 = {
delegated [p = B1a.p],
√ → B1a.entry1

}

B1a = {

entry1 → p
}

B2 = {

√ → p
}

p (p : B1.p, p : B2.p)

3.3.5 Shorthand notations

Several shorthand notations are introduced to facilitate the modelling of
frequently occurring specifications. A shorthand notation is a graphical
expression of a certain composition of concepts without abstracting from
any design information in that composition of concepts. Shorthand
notations used in this thesis are disabling relation, choice relation, concurrency
relation, and repetitive behaviour instantiation.

Disabling relation
In a disabling condition {¬b → a} as depicted in Figure 3-29(i), action a
may occur if action b has not occurred and actions a and b do not occur
simultaneously. This non-simultaneous condition can be explicitly defined
as {a ∨ ¬a → b}, i.e. action b can only occur after or before action a, as
depicted in Figure 3-29(ii). A causality relation which consists of a disabling
condition and its corresponding non-simultaneous condition is called
disabling relation. A shorthand notation for a disabling relation is depicted in
Figure 3-29(iii).

Figure 3-27
Delegated interaction
contribution

Figure 3-28
Textual expression of
Figure 3-27

66 CHAPTER 3 DESIGN CONCEPTS FOR INTERACTION MODELLING

Choice relation
A choice relation between two actions b and c defines that only one of those
actions may occur. This relation is depicted in Figure 3-30(i). This relation
is modelled as a mutual disabling {¬b → c, ¬c → b}, i.e., the occurrence
of action b disables the occurrence of action c, and vice versa. Shorthand
notations for a choice relation are depicted in Figure 3-30(ii) and (iii). The
shorthand notation in Figure 3-30(iii) is called or-split shorthand.

(i) choice relation

b

c

a

(ii) shorthand

a

b

c

a

b

c

(ii) or-split shorthand

Concurrency relation
A concurrency relation between two actions b and c defines the independence
of those actions from each other, as depicted in Figure 3-31(i). It is
implicitly modelled by the absence of a causality relation between those
actions. Alternatively, concurrency can be explicitly modelled using a
shorthand notation depicted in Figure 3-31(ii). This shorthand notation is
called and-split shorthand.

Repetitive behaviour instantiation
A repetitive behaviour instantiation is a behaviour instantiation that repeateadly
creates instances of a behaviour as long as a condition holds. This condition
is called a repetition constraint. It is repetitive because it creates a behaviour
instance only after the execution of a previous behaviour instance
completes, i.e., all actions have occurred or cannot occur anymore. A
repetitive behaviour instantiation can be modelled using a recursive
behaviour instantiation. Figure 3-32(i) depicts a repetitive behaviour

Figure 3-29
Disabling relation

Figure 3-30
Choice relation

Figure 3-31
Concurrency relation

 ABSTRACT INTERACTION MODELLING 67

instantiation to execute action a repeatedly as long as repetition constraint x
holds. It should have one entry point and one exit point only. These entry
and exit points should have the same list of parameters, because the
parameter values of the exit point of a behaviour instance will be assigned to
the parameters of the entry point of the next behaviour instance. A
shorthand notation for a repetitive behaviour instantiation is depicted in
Figure 3-32(ii). This shorthand includes assignments of parameter values of
the exit point of a behaviour instance to parameters of the entry point of
the next behaviour instance. Figure 3-33 textually expresses references to
the entry and exit point of that repetitive behaviour instantiation. A
repetitive behaviour instantiation is expressed with keyword ‘Repeat’
followed by the name of the behaviour definition to be repeated and the
repetition constraint between the symbols ‘(’ and ‘)’. The repetition
constraint is delimited by the symbols ‘[’ and ‘]’.

Repeat(B[x]).entry1 ; entry point entry1 of repetitive behaviour instantiation B
Repeat(B[x]).exit1 ; exit point exit1 of repetitive behaviour instantiation B

3.4 Abstract interaction modelling

This section shows the limitations of the ISDL interaction concept for
modelling abstract interactions with respect to the criteria of the suitability
analysis given in Chapter 2.

An interaction establishes a common result. This result is available from
the same time moment and at the same location for all participants. This
uniform representation of a result is sufficient for the modelling of an
abstraction of direct interactions between participants, in which all
participants have the same interest in the result (a case of pattern 1 in
Section 2.3.2). However, this uniform representation cannot be used in the
modelling of an abstraction of indirect interactions (pattern 2); an
abstraction of interactions between three or more participants, in which
every interaction is performed by two participants only (pattern 3); and an

Figure 3-32
Repetitive behaviour
instantiation

Figure 3-33
Textual expression of
Figure 3-32(ii)

68 CHAPTER 3 DESIGN CONCEPTS FOR INTERACTION MODELLING

interaction whose participants have different interests on the result (pattern
4).

Example 1
Figure 3-34 depicts an ISDL model of interactions between a buyer, seller,
and bank for a payment in our motivating example (see Section 2.3.1). The
payment is done using a money transfer from the buyer’s bank account in
the Netherlands to the seller’s bank account in Switzerland. An invoice
indicates that the seller demands a transfer of some amount of money, e.g.,
CHF 1500, to her bank account 56.002.876. The buyer orders the bank to
transfer that amount of money from his bank account 93.123.992. The
bank calculates the currency conversion to euro and charges a transfer fee.
The buyer hence has to transfer EUR 1100 [otB.ι3 = f1(siB.ι2) + fee]. Both
the buyer and the bank see a uniform representation of the result that EUR
1100 is deducted from the buyer’s bank account. After receiving a
notification about the payment, the seller checks the balance of her bank
account. Both the seller and the bank see a uniform representation of the
result that CHF 1500 [cbK.ι4 = f2(otK.ι3) – fee] has been credited to the
seller’s bank account.

At a higher abstraction level, one may want to model this example as a
single interaction between the buyer, seller, and bank, as depicted in Figure
3-35. The buyer sees the payment of EUR 1100 and the seller sees the
payment of CHF 1500. The bank is interested in transferring the money
and collecting the fee for that money transfer. These different views on the
result cannot be represented using a uniform representation of the result.

Figure 3-34
Interactions between a
buyer, seller, and bank
for a payment

 ABSTRACT INTERACTION MODELLING 69

Bank

SellerBuyer
pB pS

pay

 : CHF

pK

 : EUR

1 : CHF
2 : EUR
3 : CHF | 3 = f(2) – 1

Example 2
In indirect interactions through an intermediary, participants are typically at
different locations. This implies that the result available from different time
moments for different participants. Figure 3-36 depicts an ISDL model of
indirect interactions between a seller and buyer through a courier for an
article delivery in our motivating example (see Section 2.3.1). The seller is
in Switzerland and the buyer is in the Netherlands. This article delivery
occurs for the buyer when he receives the article. It occurs for the seller
when she gets a confirmation from the courier that the buyer has received
the article.

At a higher abstraction level, one may want to model this example as a
single interaction between the buyer and the seller, abstracting from the
courier as an intermediary. The buyer and the seller see that the delivery of
the article completes at different time moments and locations. For the
buyer, the delivery completes when he receives the article. For the seller,
the delivery completes when she gets a confirmation indicating that the
buyer has received the article. These different views on the result cannot be
represented using a uniform representation of the time moment in the
result.

Example 3
Modelling the sending of an invoice from the seller to the buyer as an
interaction sendInvoice, as depicted in Figure 3-34, requires that the invoice
should be available from the same time and at the same location for the

Figure 3-35
An abstract interaction
between the buyer,
seller, and bank

Figure 3-36
Indirect interactions
between a seller and
buyer through a courier

70 CHAPTER 3 DESIGN CONCEPTS FOR INTERACTION MODELLING

seller and buyer. This limits its implementation to a direct interaction
between the buyer and seller, i.e., no intermediary may exist between them.
An implementation in which the buyer and seller are distributed in different
locations is not possible, because such an implementation needs
communication middleware between the buyer and seller. Any intermediary
makes the implementation also distributed in time.

Conclusion
While a uniform representation of a result is sufficient for modelling
concrete interactions, this definition is too restrictive for modelling abstract
interactions. The distributed nature of an interaction makes the interaction
result available from different time moments and at different locations. At a
higher abstraction level, different participants may want to have their own
views on the interaction result. Therefore, an enhancement of the ISDL
interaction concept is necessary in order to make it fully suitable for
modelling abstract interactions.

3.5 Enhanced interaction concept

As mentioned in Section 2.4.5, several ideas for improving ISDL have been
suggested in, and beyond, our research group. Most of these ideas, though,
have not been formalised yet. In this section, we formalize the improvement
on the interaction concept in order to make it satisfy the requirements
defined in Section 2.6.

We introduce the concept of view that enables us to enhance the
interaction concept. The concept of view is not specific to the interaction
concept, as it can also be used in the action concept. We then introduce
concepts that are specific to the interaction concept: contribution constraints,
distribution constraints, and interaction synchronisation.

Contribution constraints and distribution constraints specify the
possible results of an interaction. An interaction can only occur if all
contribution constraints and distribution constraints can be satisfied.

3.5.1 Views

An interaction establishes a common result between participants. A
participant has its own view on the established result. A view represents a
result in terms of information, time, and location attribute values.

Figure 3-37 illustrates this idea. Two participants A and B may have
different views on an interaction result. A participant may want to see the
result in the way that is convenient for the participant to refer to that result.

 ENHANCED INTERACTION CONCEPT 71

A participant may be interested only in some part of the result. Participants
may have overlapped interests in the interaction result.

Since different participants may have different views on the established
result, different participants may see the result as different sets of
information values that are available from different time moments and at
different locations. This not only matches the distributed nature of an
interaction, it also matches the primary role of abstract specification. Since
the abstract specification acts as a prescription for implementation, results
of interactions that are not of interest to a participant are not only
superfluous and confusing to the specifier, they also lead to superfluous
implementation. Therefore, results of an interaction that are not of interest
to a participant should be avoided.

For example, in a money transfer interaction as in Section 3.4, a sender
sends EUR 1000 from her bank account in the Netherlands on Tuesday;
and the receiver receives CHF 1500 (because of currency conversion rate
and a charged transfer fee) in his bank account in Switzerland two days
later.

In the original interaction concept, we can consider that all participants
have the same view on the result, i.e., all participants see the same set of
information values that are available from the same time moment and at the
same location. In the action concept, an entity that performs an action sees
the action result through a view. Since no other entity is involved, there is
only one view on the action result.

3.5.2 Contribution constraints

A participant has its conditions for the acceptability of the results of an
interaction, and thus must provide the information on the basis of which
these results can be calculated. We formulate this by saying that the
participant has a responsibility in the establishment of an interaction result.
Contribution constraints of a participant model the responsibility of that
participant in the establishment of an interaction result. They also model
the view that the participant has on the result.

Figure 3-37
Each participant has its
own view on the
interaction result

72 CHAPTER 3 DESIGN CONCEPTS FOR INTERACTION MODELLING

For example, in a purchase interaction, the buyer’s contribution
constraints are that the item to buy should be a bicycle XYZ whose
maximum price is EUR 500 (including fees, if any); and that the purchase
should occur before 16th April 2010. The seller’s contribution constraints
are that the item should be a bicycle; that the bicycle should be sold at a
price that is higher than the minimum price tagged to that bicycle; that the
purchase should occur at any day except Sunday; and that the purchase
should occur at his bicycle shop.

The concept of contribution constraint is identical to the concept of
attribute constraint that is attached to an interaction in the original
interaction concept.

3.5.3 Distribution constraints

A participant’s view represents an interaction result in terms of
information, time, and location attribute values. Since the interaction result
is common to all participants, it makes the views of different participants be
related to each other. Distribution constraints of an interaction model the
relations between participants’ views.

For example, in the purchase interaction above, the distribution
constraints are that the bicycle bought by the buyer should be the bicycle
sold by the seller; that the buying price excluding some fee, if any, should
be equal to the selling price; and that the purchase should occur at the same
day both for the buyer and the seller. In a money transfer interaction, the
distribution constraint is that the money received by the receiver should be
equal to the money sent by the sender minus a transfer fee.

At least one distribution constraint must be specified in an interaction,
regardless of which attributes are related by that distribution constraint. For
example, two entities need to synchronise their execution at some point of
time, without establishing any information attribute value. This can be
modelled as an interaction that has one distribution constraint relating the
time attributes of the interaction contributions of those entities.

When information attributes are unconstrained, they are not related to
each other. Those attributes hence should not be specified in an
interaction. When time attributes are unconstrained, no assumption can be
made whether information attribute values should be available from the
same time moment or from different time moments. Similarly, when
location attributes are unconstrained, no assumption can be made whether
information attribute values should be available at the same location or at
different locations.

The concept of distribution constraint is a new concept that is added to
the enhanced interaction concept. In the original interaction concept,

 ENHANCED INTERACTION CONCEPT 73

distribution constraints are pre-defined, i.e., all participants have the same
views on the interaction result.

Figure 3-38 depicts the graphical expression of a purchase interaction

between a buyer and seller. Contribution constraints are specified in a text
box attached to an interaction contribution. Distribution constraints are
specified in a text box attached to the line linking the segmented ellipses,
e.g., ‘buy.ι1 = sell.ι1’.

The distribution constraints of an interaction are textually expressed
between the symbols ‘[’ and ‘]’ after the list of interaction contributions of
that interaction as depicted in Figure 3-38.

Buyer = {

buy (ι1 : Bicycle, ι2 : Money, τ : Date, λ : Store)
[ι1 = Bicycle XYZ,
ι2 < 500,
τ < 16.04.2010]

}

Seller = {

sell (ι1 : Bicycle, ι2 : Money, τ : Day, λ : Store)
[ι2 > minPrice(ι1),
τ = [Mon, Tue, Wed, Thu, Fri, Sat]
λ= BikeShop, Enschede]

}

purchase (buy: Buyer.buy, sell: Seller.sell)

[buy.ι1 = sell.ι1,
 buy.ι2 – fee = sell.ι2,
 dayOfWeek(buy.τ) = sell.τ

buy.λ = sell.λ]

Figure 3-38
Interaction purchase

Figure 3-39
Textual expression of
Figure 3-38

74 CHAPTER 3 DESIGN CONCEPTS FOR INTERACTION MODELLING

3.5.4 Interaction synchronisation

Interaction synchronisation models the time dependencies between
participants on each other via the interaction. Synchronisation implies that
the future behaviour of all participants depend on the occurrence of the
actions that lead to the interaction. In Figure 3-40, interaction q depends
on actions a and c. Consequently, the future behaviours of participants B1
and B2 depends indirectly on those actions, i.e., action b of participant B1
not only depends on action a, but also depends on action c of participant
B2. Hence, it is possible that b.τ < q2.τ, but it is always true that b.τ <
c.τ. Figure 3-41 calculates these dependencies.

We introduce a notation ‘:→’ to denote an indirect causality relation. If
‘a → b’ and ‘b → c’ then ‘a :→ c’. This notation is useful to show the
dependency of our interest without having to show the complete causality
relations. This notation is typically used when we draw a conclusion from a
dependency calculation.

B1.a → B1.q1
q (B1.q1, B2.q2) ; interaction q
B2.q2 → B2.d
B1.a :→ B2.d ; B2.d indirectly depends on B1.a

B2.c → B2.q2
q (B1.q1, B2.q2) ; interaction q
B1.q1 → B1.b
B2.c :→ B1.b ; B1.b indirectly depends on B2.c

It should be noted that an action of a participant cannot refer to the

result of an action of another participant, unless that result is made available
in the interaction. In Figure 3-40, action d of participant B2 cannot directly
refer to the result of action a of participant B1.

3.5.5 Multilateral interactions

The interaction concept allows us to specify an interaction between more
than two participants. We call such interactions multilateral interactions. For
example, an auction is an interaction between an auctioneer and multiple
bidders to determine the price of an item. Figure 3-42 depicts an auction

Figure 3-40
Dependencies between
interaction q and actions
of participants

Figure 3-41
Calculation of indirect
dependency between
actions of different
participants

 ENHANCED INTERACTION CONCEPT 75

interaction between an auctioneer and two bidders. This interaction is
graphically expressed by connecting each interaction contribution to a thick
black dot. This thick black dot can be omitted for brevity in case only two
participants are involved (as in Figure 3-38). This auction interaction is
textually expressed in Figure 3-43.

Auctioneer = {

s (ι1 : Bid, ι2 : Bid, ι3 : Price)
[ι3 > 3000]

}

Bidder1 = {

b1 (ι1 : Bid, ι2 : Boolean)
[ι1 < 5000]

}

Bidder2 = {

b2 (ι1 : Bid, ι2 : Boolean)
[ι1 < 5000]

}

auction (s : Auctioneer.s, b1 : Bidder1.b1, b2 : Bidder2.b2)

[s.ι1 =b1.ι1,
s.ι2 = b2.ι1,
s.ι3 = max(b1.ι1, b2.ι1),
b1.ι2 = (s.ι3 == b1.ι1),
b1.ι2 = (s.ι3 == b2.ι1)]

The auction interaction in Figure 3-42 models a first-price sealed-bid

auction [75]. Since a bidder should not be allowed to observe the other
bidder’s bid, no distribution constraint is defined to relate the bidders’

Figure 3-42
Interaction auction

Figure 3-43
Textual expression of
Figure 3-42

76 CHAPTER 3 DESIGN CONCEPTS FOR INTERACTION MODELLING

attribute values. Only the auctioneer can see the bids. This is modelled as
distribution constraints [s.ι1 = b1.ι1] and [s.ι2 = b2.ι1]. The price of an
item is determined by the highest bid: [s.ι3 = max(b1.ι1, b2.ι1)]. Each
bidder is notified whether he is the winner or not: [b1.ι2 = (s.ι3 ==
b1.ι1)] and [b2.ι2 = (s.ι3 == b2.ι2)]. The contribution constraints specify
that the auctioneer demands a price higher than a certain price [s.ι3 >
3000] and each bidder allows a certain maximum bid: [b1.ι1 < 5000] and
[b2.ι1 < 6000]. It should be noted that, at this abstraction level, there is no
ordering in the establishment of information attribute values.

3.6 Relationships between behavioural concepts

The relationships between behavioural concepts presented in the previous
sections can be explained using the conceptual model in Figure 3-44.
Concepts in grey are specific to interaction.

Behaviour

1..*

Causality
Constraint

constrains>
*

*

Action Result
establishes>

Interaction

Interaction
Contribution

2..*

co
ns

tra
ins

>

Contribution
Constraint

defines>

defines>

defines>

*

Distribution
Constraint

Result
Constraint

*

1..*

*

Causality TargetCausality
Condition

targets>

*refers>

Causality
Relation

ViewEntity

performs>

has>

represents>

performs>

2..*

relates>

1..*

An action is a unit of activity that is performed by an entity to establish a
result. An action may define a number of result constraints to constrain the
result that can be established. In Section 3.3, a result constraint is called an
attribute constraint. An entity has a view that represents the established result,
in terms of information, time, and location attribute values.

Figure 3-44
Conceptual model of
concepts for behaviour
modelling

 SHORTHAND NOTATIONS 77

An interaction is an action that is performed by two or more entities to
establish a common result. An interaction is composed of two or more
interaction contributions; each of which models the contribution of a
participating entity to the interaction. Each participating entity has its own
view on the established result. Different participants may have different
views on the result.

The result established by an interaction is constrained by zero or more
contribution constraints and one or more distribution constraints. A
contribution constraint is a result constraint that is defined by an interaction
contribution. A distribution constraint is a result constraint that is defined by
an interaction to relate the views of participating entities.

A behaviour consists of one or more causality relations. A causality relation
consists of a causality condition and causality target. A causality target can be
an action or an interaction contribution.

A causality condition defines the condition for the occurrence of a
causality target. A causality condition may refer to other causality targets. A
causality condition may include causality constraints. A causality constraint
defines the dependency of the occurrence of a causality target on the result
established by other causality targets.

We enhance the ISDL interaction concept by introducing the concept of
distribution constraint. We reuse the concepts of interaction, interaction
contribution, and contribution constraint that have been previously defined.
The concept of contribution constraint was previously called attribute
constraint.

Another enhancement is the introduction of the concept of view. This
concept is not specific to interaction, but it enables us to enhance the
interaction concept.

3.7 Shorthand notations

To facilitate interaction modelling, three shorthand notations are
introduced: local interaction, remote interaction, and message-passing interaction.

3.7.1 Local interaction

A local interaction is an interaction whose distribution constraints specify that
the same set of information values should be available for all participants
from the same time moment and at the same location. This implies that all
participants should have attributes of the same types. An interaction in
Figure 3-45(i) has interaction contributions q1 and q2 that specify the same
attributes of the same types. This interaction has distribution constraints
specifying that all participants have the same view on the interaction result.

78 CHAPTER 3 DESIGN CONCEPTS FOR INTERACTION MODELLING

I, T, and L are information, time, and location types, respectively. Figure
3-45 (ii) depicts a shorthand notation for this interaction specification.
Distribution constraints between information, time, and location attribute
values are graphically expressed as double solid lines between segmented
ellipses. Textually, this shorthand notation can be indicated with keyword
‘local’ as depicted in Figure 3-46.

B1 = {
q1 (ι : I, τ : T, λ : L)

}

B2 = {

q2 (ι : I, τ : T, λ : L)
}

q(q1: B1.q1, q2: B2.q2) [local]

The original interaction concept of ISDL presented in Section 3.3.2 is a
local interaction.

3.7.2 Remote interaction

A remote interaction is an interaction whose distribution constraints specify
that the same set of information values should be available for all
participants, but it can be available from different time moments and at
different locations. This implies that all participants should have
information attributes of the same types. An interaction in Figure 3-47(i)
has interaction contributions q1 and q2 that specify the same information
attributes of the same types. This interaction has a distribution constraint
that specifies that all participants should see the same set of information
values representing the interaction result. Time and location attributes are
omitted because they are not of interest in this interaction. Figure 3-47 (ii)
depicts a shorthand notation for this interaction specification. Distribution
constraints between information attribute values are graphically expressed
as double lines (one solid line and one dash line) between segmented

Figure 3-45
Local interaction

Figure 3-46
Textual expression of a
local interaction

 SHORTHAND NOTATIONS 79

ellipses. Textually, this shorthand notation can be indicated with keyword
‘remote’ as depicted in Figure 3-48.

B1 = {
q1 (ι : I)

}

B2 = {

q2 (ι : I)
}

q(q1: B1.q1, q2: B2.q2) [remote]

Distribution constraints that relate between time attribute values or

between location attribute values should be defined when those attribute
values are of interest in an interaction. Figure 3-49 depicts a remote
interaction with a distribution constraint on time attributes, i.e., that the
difference between time attribute values should be less than an acceptable
delay δ. This remote interaction is textually expressed in Figure 3-50.

q(q1: B1.q1, q2: B2.q2)
[remote,
|q1.τ – q2.τ | <δ]

3.7.3 Message-passing communication

A message-passing communication represents the exchange of a message
between two entities: a sender and receiver, in which the sender sends a
message to the receiver via some communication means and the receiver
receives the message. The sender continues its execution immediately after

Figure 3-47
Remote interaction

Figure 3-48
Textual expression of a
remote interaction

Figure 3-49
Remote interaction with
a distribution constraint
for time attributes

Figure 3-50
Textual expression of a
remote interaction with
distribution constraint

80 CHAPTER 3 DESIGN CONCEPTS FOR INTERACTION MODELLING

sending the message. Figure 3-51 depicts this behaviour. Behaviours S, R,
and M represent the behaviours of the sender, receiver, and communication
means, respectively. Since interaction rcv depends on interaction snd, the
receiver depends on action a of the sender. The sender does not depend on
action c of the receiver.

Figure 3-52 depicts a shorthand notation for this behaviour by hiding
the behaviour of the communication means. This allows one to model
partial or one-way synchronisation. Causal dependency between
participants is indicated by an arrow between segmented ellipses.
Information attributes of interaction contributions snd and rcv should be of
the same type.

S

snda

b

R

rcv c

d

 : msg : msg

A message-passing communication cannot be represented using our
interaction concept, because it does not provide full synchronisation
between the sender and receiver, i.e., the receiver depends on the sender,
while the sender does not depend on the receiver.

3.8 Concluding remarks

In this chapter, we have presented the ISDL design concepts for behaviour
modelling of distributed systems. Section 3.4 shows the limitations of the
original ISDL interaction concept for modelling abstract interactions.
Subsequently, we have enhanced that interaction concept in order to make
it fully suitable for that purpose.

Our main enhancement on the interaction concept is that different
participants may have different views on the interaction result, i.e., different
participants may see different sets of information values that are available
from different time moments and at different location. We introduce an
interaction property, called distribution constraints, to relate those different
views.

Figure 3-51
Interactions for
message-passing
communication

Figure 3-52
Shorthand notation for
message-passing
communication

 CONCLUDING REMARKS 81

The enchanced interaction concept satisfies the suitability requirements
for modelling abstract interaction, as defined in Section 2.6. It allows one

– to model an interaction between two or more participants,
– to define different views of different participants on the established

result,
– to specify the relation between different views of different

participants, and
– to express participants’ requirements directly.

Therefore, we consider that the enchanced interaction concept is suitable
for modelling abstract interactions. The suitability requirement for
modelling concrete interactions is addressed later in Chapter 5.

The original ISDL interaction concept is based on synchronous
interaction model [44], which we found too limited to use at higher
abstraction levels. Synchronous interactions can be easily modelled using
our enhanced interaction concept. A shorthand notation called local
interaction is provided to represent synchronous interactions.

Chapter 4

4. Interaction design transformations

During a design process, interaction designs are transformed from one
abstraction level to another abstraction level. An interaction design
transformation can be a refinement or an abstraction. In interaction
refinement, an abstract interaction is replaced with a structure of more
concrete interactions. Conversely, in interaction abstraction, a structure of
interactions is replaced with a more abstract interaction. Each
transformation should result in a correct interaction design.

Three basic concepts for behavioural modelling in ISDL are action,
interaction, and causality relation, as presented in Chapter 3. ISDL
supports two basic types of behaviour refinement: action refinement and
causality refinement. Interaction refinement can be done indirectly by using
these basic types of refinements, abstraction of an interaction into an
action, and refinement of an action into an interaction. We find out that
indirect interaction refinement is not sufficient because it loses information
about the distribution of responsibility between participants. Direct
interaction refinement that maintains that information is therefore
necessary.

This chapter presents design transformations for behaviour models of
distributed systems in ISDL [44, 107, 110, 111] and extends them with
interaction design transformations. This chapter is organised as follows:
Section 4.1 presents behaviour refinement. Section 4.2 presents behaviour
abstraction. Section 4.3 presents refinement of actions into interactions.
These three sections summarise the current state-of-the-art of behaviour
transformation in ISDL. The following sections are new contributions.
Section 4.4 presents a strategy for indirect interaction refinement and
shows that the strategy is not sufficient for transforming interaction designs.
Section 4.5 presents direct interaction refinement. Section 4.6 provides a
method for assessing the conformance between an abstract and concrete
interaction design. Section 4.7 gives guidelines on possible interaction

84 CHAPTER 4 INTERACTION DESIGN TRANSFORMATIONS

refinement. Section 4.8 discusses related work. Finally, Section 4.9 presents
some concluding remarks.

4.1 Behaviour refinement

In a top-down design process, an abstract design is replaced with a more
concrete design, i.e. a design that is closer to the real system to be built. We
call behaviour refinement a design transformation that replaces an abstract
behaviour with a more concrete behaviour. The choice of a particular
concrete behaviour is determined by specific design objectives. Behaviour
refinement allows one to add design details, also called design information,
to an abstract behaviour such that the abstract behaviour can be better
implemented, preferably with available building blocks.

Behaviour refinement is a creative process in which one creates a
concrete behaviour to replace an abstract behaviour. Behaviour refinement
can be guided, e.g., by design patterns to satisfy generic requirements as in
[16, 46, 54, 70, 129], but in general it cannot be automated.

4.1.1 Conformance

A concrete behaviour should be “correct” with regard to an abstract
behaviour. Such correct concrete behaviour preserves the design
information defined in the abstract behaviour, while it defines additional
design details that do not conflict with the abstract behaviour. When this is
the case, the concrete behaviour is said to conform to the abstract behaviour.

It is assumed that the occurrence of an abstract action corresponds to
the occurrence(s) of one or more concrete actions whose results are
equivalent to the desired result of the abstract action. This assumption
allows one to compare the abstract behaviour to the concrete behaviour in
order to assess the conformance of the concrete behaviour.

Concrete actions whose occurrences determine the occurrence of an
abstract action are called reference actions, because they are used as reference
points in the concrete behaviour for assessing conformance. The occurrence
of an abstract action is determined by the occurrence(s) of one or more
reference actions, depending on the type of behaviour refinement.

To determine the conformance between abstract and concrete
behaviours, the following conformance requirements are identified [110].
– BR1: Preservation of causality relations. The causality relations between

abstract actions should be preserved by the causality relations between
their corresponding concrete actions.

 BEHAVIOUR REFINEMENT 85

– BR2: Preservation of attribute values. The possible resulting attribute values
of abstract actions should be preserved by their corresponding concrete
actions, i.e., the concrete actions should be able to establish the same
results as specified by the abstract actions.

4.1.2 Basic types of behaviour refinement

Two basic types of behaviour refinement are identified: causality refinement
and action refinement [110]. Behaviour refinement may consist of one of
these basic types of refinement or a combination of both. Figure 4-1
depicts these basic types of behaviour refinement. These basic types of
behaviour refinement are explained below.

causality refinement action refinement

a b1 b2

21

concrete action structure B

a b

1, 2

a c b

1, 2

inserted action

reference actions reference actions final action

non-final action

Causality refinement
Causality refinement is a behaviour refinement that replaces causality relations
between abstract actions with causality relations that involve their
corresponding concrete actions and some inserted actions, to model in
more detail the relations between those abstract actions. Inserted actions are
concrete actions that are not reference actions. They are inserted during
causality refinement to model additional activities in the concrete behaviour
that are not considered in the abstract behaviour.

Each abstract action corresponds to a single reference action in the
concrete behaviour. The possible results of an abstract action are preserved
by its corresponding reference action.

In Figure 4-1, an abstract behaviour consists of related abstract actions a
and b. Abstract action b establishes a result that is represented by two
attribute values ι1 and ι2. Causality refinement of the enabling relation
between abstract actions a and b results in two enabling relations through an
inserted action c. Concrete actions a and b are reference actions that

Figure 4-1
Causality refinement and
action refinement

86 CHAPTER 4 INTERACTION DESIGN TRANSFORMATIONS

correspond to abstract action a and b, respectively. In the concrete
behaviour, attribute values ι1 and ι2 are established by concrete action b.

Conformance requirement BR1 (preservation of causality relations) is
addressed in Section 4.2.1. Conformance requirement BR2 (preservation of
attribute values) is interpreted as follows.
– The information values of an abstract action should be preserved in the

information attribute of the corresponding reference action.
– The time moment of an abstract action should be preserved by the time

moment of the corresponding reference action.
– The location of an abstract action should be preserved by the location of

the corresponding reference action.

Action refinement
Action refinement is a behaviour refinement that replaces an abstract action by
a composition of more concrete actions and their causality relations, to
model in more detail the activity that is represented by that abstract action.
The concrete actions and their causality relations are represented in a
structure that is called a concrete action structure. The attributes of the abstract
action are distributed, and allocated to one, more or all of the attributes of
the concrete actions.

In Figure 4-1, action refinement of abstract action b results in a
concrete action structure B that consists of concrete actions b1 and b2 and
their causality relations. Attribute values ι1 and ι2 are established by
concrete actions b1 and b2, respectively. Actions b1 and b2 are reference
actions that correspond to abstract action b.

A concrete action structure establishes the attribute values as specified
by the abstract action through the occurrence of one or more reference
actions. These reference actions are called the final actions of the concrete
action structure. Reference actions that are not final actions are called non-
final actions. In Figure 4-1, concrete action b2 is the final action of concrete
action structure B. Concrete action b1 is a non-final action.

With regard to the actions that depend on the concrete action structure,
three basic configurations of final actions are identified:
– single final action: a concrete action structure makes all its attribute values

available when this final action occurs;
– conjunction of final actions: a concrete action structure makes all its

attribute values available when all these final actions occur;
– disjunction of final actions: a concrete action structure makes all its

attribute values available when one of these final actions occurs. Other
final actions do not occur.

These basic configurations can be combined into a more complex
configuration of final actions.

The concrete action structure in Figure 4-1 has a single final action b2.

 BEHAVIOUR REFINEMENT 87

Conformance requirement BR1 is addressed in Section 4.2.2.
Conformance requirement BR2 is interpreted as follows [110]. The
abbreviations (sf), (cf) and (df) indicate single final action, conjunction of
final actions, and disjunction of final actions, respectively.
– The information values of an abstract action should be preserved in

– (sf) the information attributes of the final action, or
– (cf) the union of the information attributes of the final actions, or
– (df) the information attributes of the actual final action that occurs;

and
– the information attributes of non-final actions that can be referred to

via the final actions.
Information values of the abstract action are established in the final
action(s) and/or in the non-final action(s) that can be referred to via the
final action(s). As mentioned, the attributes of the abstract action are
distributed to one, more, or all of the attributes of the concrete actions.
An action that refer to the information attributes of that abstract action
should be able to refer to all information attributes of the reference
actions. This reference can only be done if the reference actions occur
and enable the final actions.

– The time moment of an abstract action should be preserved by
– (sf) the time moment of the final action, or
– (cf) the time moment of the latest final action, or
– (df) the time moment of the actual final action that occurs.
The abstract action occurs when all information values of the concrete
action structure are available.

– The location of an abstract action should be preserved by
– (sf) the location of the final action, or
– (cf) the collection of the locations of the final actions, or
– (df) the location of the actual final action that occur.
The location of an abstract action represents the location(s) of the final
action(s).

4.1.3 Conformance assessment

Conformance assessment checks whether a concrete behaviour conforms to an
abstract behaviour. It consists of the following steps [110] as illustrated in
Figure 4-2.
1. Determine the abstraction of the concrete behaviour. This activity is

done by applying abstraction rules in order to obtain the abstraction of
the concrete behaviour that has the same design details as the original
abstract behaviour.

2. Compare the abstraction of the concrete behaviour to the original
abstract behaviour. This activity checks whether both abstract

88 CHAPTER 4 INTERACTION DESIGN TRANSFORMATIONS

behaviours comply with a certain correctness relation. If this is the case,
the concrete behaviour conforms to the abstract behaviour. Otherwise,
the concrete behaviour does not conform to the abstract behaviour.

A correctness relation can be
– an equivalence relation: the concrete behaviour preserves all design

information of the abstract behaviour; or
– a partial ordering relation: the concrete behaviour preserves a subset of

design information of the abstract behaviour.
In general, a concrete behaviour is a correct refinement of an abstract
behaviour if an equivalence relation holds. However, one may allow a partial
ordering relation between an abstract and concrete behaviour. This can be
done, for example, to satisfy implementation requirements.

4.2 Behaviour abstraction

Behaviour abstraction is a design transformation that replaces a concrete
behaviour with an abstract behaviour. It is the reverse transformation of
behaviour refinement in which some design information is abstracted from,
we say “removed”, from the concrete behaviour. An abstraction of a
concrete behaviour is hence determined by the remaining design
information. Abstraction rules can be defined to obtain abstractions of
concrete behaviours. Thus, in principle, behaviour abstraction can be
automated if one knows which design information should be preserved.

In general, the choice of particular design information to be removed is
determined by specific objectives. In conformance assessment, behaviour
abstraction is used to obtain an abstraction of a concrete behaviour such
that the obtained abstraction can be compared to the original abstract
behaviour (as depicted in Figure 4-2). Design information that is added
during behaviour refinement should be removed when transforming back to
the original abstract behaviour.

A method to determine an abstraction of a concrete behaviour consists
of the following steps [110].

Figure 4-2
Conformance
assessment

 BEHAVIOUR ABSTRACTION 89

1. Determine the concrete actions that are considered as reference actions,
inserted actions, and final actions in the concrete behaviour.

2. Abstract from inserted actions. This step can be done by using the
abstraction method presented in Section 4.2.1.

3. Replace each group of reference actions with an abstract action. This
step can be done by using the abstraction method presented in Section
4.2.2.

Two abstraction methods are defined: abstraction from inserted actions and

abstraction from final actions, which correspond to the basic types of behaviour
refinement, i.e., causality refinement and action refinement, respectively.

4.2.1 Abstraction from inserted actions

This abstraction method allows one to obtain an abstraction of a concrete
behaviour, abstracting from a single inserted action. By consecutively
abstracting from each single inserted action in any order, one can abstract
from multiple inserted actions.

Approach
An inserted action is inserted in the causality relations between reference
actions. To abstract from the inserted action, one should determine the
concrete actions that are considered as reference actions. These reference
actions are called the causality context of the inserted action.

A causality relation between actions represents the causal dependencies
between the occurrences of those actions in execution. These causal
dependencies in execution are called execution relations. When an action is
inserted in the causality relation between reference actions, the execution
relation between those reference actions is defined indirectly via the
occurrence of the inserted action. Conversely, an indirect execution relation
between two actions via an inserted action can be abstracted from the
occurrence of the inserted action.

Multiple indirect execution relations between the same referene actions
via the same inserted action can be combined into an execution structure. By
abstracting from the occurrence of the inserted action in each indirect
execution relation, the execution structure can abstract from the
occurrence of the inserted action. Based on that, a method for abstracting a
behaviour definition from an inserted action is defined.

The following sub-sections explain this approach in more detail.

Causality context
The causality context of an inserted action only considers actions that are
directly related to the inserted action, i.e.,

90 CHAPTER 4 INTERACTION DESIGN TRANSFORMATIONS

– actions whose causality conditions contain the inserted action; and
– actions that are parts of the causality condition of the inserted action.
These actions are called context actions. The causality context of inserted
action a is denoted by Con(a). In Figure 4-3, Con(a) = {b, d}, Con(b) = {a,
c, d}, Con(c) = {b}, Con(d) = {a, b, e}, and Con(e) = {d}.

An inserted action allows a context action to refer indirectly to the
attribute values of another context action. In Figure 4-3, action b can be
considered as an inserted action that relates actions a and c indirectly.

Execution relations
A behaviour definition allows multiple possible executions. An execution
represents the outcome of a possible run of a behaviour definition. The
outcome consists of
– action occurrences, which include actions that have occurred and

attribute values that are established in those actions; and
– the relations between action occurrences, which are called execution

relations.
A behaviour definition can be specified as the disjunction of all possible
executions.

Two distinct execution relations between actions a and b are identified
(as depicted in Figure 4-4):
– enabling relation, which defines the ordering between the occurrences of

actions a and b, such that the occurrence of action b depends on the
occurrence of action a. The occurrence of action a can be either
independent of the occurrence of action b, i.e. {√ → a, a → b }; or be
dependent on the non-occurrence of action b, i.e. {¬b → a, a → b }.

– exclusion relation, which defines the choice between the occurrences of
actions a and b, such that the occurrence of action b depends on the
non-occurrence of action a, and vice versa {¬a → b, ¬b → a}.

Action occurrences are graphically expressed as grey ellipses.

An indirect execution relation between two actions can be defined via a
third action. Figure 4-5 illustrates that the conjunction of two execution
relations, i.e., an enabling relation between actions a and c and another

Figure 4-3
Example behaviour

Figure 4-4
Execution relations

 BEHAVIOUR ABSTRACTION 91

enabling relation between actions c and b, defines an indirect execution
relation between actions a and b via action c.

Abstraction from indirect execution relations
Two basic rules for abstracting indirect execution relations from an inserted
action are defined: transitivity of enabling and inheritance of exclusion [110].

Transitivity of enabling:

If a concrete action x is an enabling condition of an inserted action z
and the inserted action z is an enabling condition of a concrete action y,
then an abstract action x is an enabling condition of an abstract action y.

Figure 4-6 illustrates this rule.

If the condition of inserted action z is a start condition √, then the
condition of abstract action y is a start condition √. Figure 4-7 illustrates
this rule.

Inheritance of exclusion:
If an inserted action z is an enabling condition of a concrete action y,
then the exclusion between the inserted action z and another concrete
action x is inherited by abstract actions y and x.

Figure 4-8 illustrates this rule.

If none of the above rules is applicable to an indirect execution relation,
concrete actions x and y occur independently. Consequently, abstract
actions x and y also occur independently.

Table 4-1 shows the results of the applications of the abstraction rules
for every possible indirect execution relations between concrete actions x
and y when abstracting from an inserted action z [110].

Figure 4-5
Indirect execution
relation between actions
a and b

Figure 4-6
Transitivity of enabling

Figure 4-7
Transitivity of enabling:
the condition of action z
is a start condition

Figure 4-8
Inheritance of exclusion

92 CHAPTER 4 INTERACTION DESIGN TRANSFORMATIONS

Legend:

 represents enabling relation: {√ → x, x → z} or {¬z → x, x → z}

 represents exclusion relation: {¬x → z, ¬z → x}

 represents independence: {√ → x, √ → y}

Execution structures
An execution structure is a conjunction of multiple indirect execution relations
in which an inserted action relates different pairs of context actions.
Conversely, one can determine all possible indirect execution relations from
an execution structure. Figure 4-9(i) depicts an execution structure with
action d as an inserted action. Figure 4-9(ii) depicts all possible indirect
execution relations from that execution structure.

A method for abstracting an execution structure from an inserted action
consists of the following steps [110].
1. Determine all possible indirect execution relations.
2. Determine the abstraction of each indirect execution relation using the

rules defined in Table 4-1.
3. Compose the condition of each abstract action as the conjunction of its

condition.
4. If possible, simplify the condition of each abstract action using the

following rules: C ∧ C = C, C ∨ C = C, and √ ∧ C = C, where C is an
arbitrary causality condition.

Figure 4-10 illustrates the application of this method to abstract an

execution structure in Figure 4-10(i) from an inserted action d. Figure
4-10(ii) depicts all possible indirect execution relations of that execution
structure. Figure 4-10(iii) depicts abstractions of these indirect execution
relations. Figure 4-10(iv) depicts the conjunctions of those abstractions.

Table 4-1
Abstraction rules for
indirect execution
relations

Figure 4-9
Execution structures and
its indirect execution
relations

 BEHAVIOUR ABSTRACTION 93

da b

da e

b d e

a e

b e

a
b

ed

a

b

e

step 1 step 2 step 3, 4

(i) (iii)(ii) (iv)

a b

An alternative execution structure represents a possible execution structure
when the causality conditions of an inserted action or its context actions are
defined using disjunctions (or-operator). For example, Figure 4-11 depicts
a disabling relations between actions a and b. As mentioned in Section
3.3.5, a disabling relation is composed of a disjunction of an enabling
relation {¬b → a, a → b} and an exclusion relation {¬a → b, ¬b → a}.
Its execution results in either an enabling relation or an exclusion relation.
A disabling relation hence has two alternative execution structures.

Abstraction method
A method for abstracting a behaviour definition from an inserted action
consists of the following steps [110].
1. Determine the causality context of the inserted action.
2. Determine all possible alternative execution structures between the

inserted action and its context actions.
3. Determine the abstraction of each execution structure from the inserted

action.
4. Compose the condition of each abstract action from the condition of its

corresponding concrete action by replacing the conditions of this
concrete action in the alternative execution structures that are obtained
in Step 2 with the disjunction of the conditions of that abstract action in
the execution structures that are obtained in Step 3.

5. If possible, simplify the condition of each abstract action.

Figure 4-12 illustrates an application of this method to abstract the

behaviour in Figure 4-12(i) from an inserted action d. The causality context
of inserted action d is Con(d) = {a, b, e}. Figure 4-12(ii) depicts all
possible alternative execution structures between inserted action d and its
context actions. A disabling relation between actions d and b is composed
of a disjunction of an enabling relation {¬d → b, b → d} and an exclusion

Figure 4-10
Abstraction of an
execution structure

Figure 4-11
Alternative execution
structures of a disabling
relation

94 CHAPTER 4 INTERACTION DESIGN TRANSFORMATIONS

relation {¬d → b, ¬b → d}. Figure 4-12(iii) depicts abstractions of these
alternative execution structures. Figure 4-12(iv) depicts the resulted
abstract behaviour.

An action can refer to other action occurrences. The rule of transitivity of
enabling enables a context action to refer indirectly to the attributes of
another context action that has occurred via an inserted action. This
abstraction rule should be applied in combination with the following rule
[110].

References to the attributes of an inserted action should be replaced
with their possible values or constraints.

When referring to the time attribute of an inserted action, implicit time
constraint should be taken into account.

Figure 4-13 illustrates an application of this rule. A concrete action b
refers to the attributes of an inserted action c. Action c refers to the
attributes of another concrete action a. Action b hence refers indirectly to
the attributes of action a. The reference to the information attribute of
inserted action c is replaced by substituting information attribute constraint
of inserted action c in the information attribute constraint of action b.
When replacing the reference to the time attribute of inserted action c, the

Figure 4-12
Abstraction from an
inserted action d

 BEHAVIOUR ABSTRACTION 95

implicit time constraint [c.τ > a.τ] imposed by the causality relation {a →
c} should be taken into account.

4.2.2 Abstraction from final actions

This abstraction method allows one to obtain an abstraction of a concrete
behaviour, abstracting from a configuration of final actions. A method for
replacing final actions of a concrete action structure A by an abstract action
a consists of the following steps. We refer to Figure 4-14 for illustration.
Actions a1 and a2 are final actions of concrete action structure A.
1. Determine the causality relation of abstract action a:

a. Determine the causality condition of abstract action a by integrating
the causality condition of the final actions.

b. Determine possible values or constraints of the attributes of abstract
action a, in terms of the possible values or constraints of the
attributes of the final actions by considering conformance
requirement BR2 (preservation of attribute values) for action
refinement (as presented in Section 4.1.2).

2. Determine the causality relations of abstract action b outside concrete
action structure A which depends on the abstract action a:
a. Replace the causality condition of abstract actions b by the

completion condition of concrete action structure A, in terms of
abstract action a.

b. Replace references to the attributes of the final actions of concrete
action structure A in abstract actions b by references to the
corresponding attributes of abstract action a as obtained in Step 1b.

A completion condition of a concrete action structure represents the
condition for the successful occurrence of the concrete action structure.
The completion conditions of the generic cases identified in Section 4.1.2
are defined as follows. The abbreviations (sf), (cf) and (df) indicate single

Figure 4-13
Abstraction of indirect
attribute references

Figure 4-14
Abstraction from final
actions

96 CHAPTER 4 INTERACTION DESIGN TRANSFORMATIONS

final action, conjunction of final actions, and disjunction of final actions,
respectively.
– (sf) The successful occurrence of the concrete action structure

corresponds to the occurrence of the single final action;
– (cf) The successful occurrence of the concrete action structure

corresponds to the occurrences of all final actions;
– (df) The successful occurrence of the concrete action structure

corresponds to the occurrence of a final action.

An application of this method to a concrete action structure A in Figure

4-14 is as follows.
– Step 1: the causality condition of abstract action a corresponds to the

conjunction of the conditions of final actions a1 and a2, i.e., c ∧ c which
is equal to c. The information attribute value of abstract action a is the
union of the information attribute values of final actions a1 and a2 [ι =
{ι1, ι2}]. The time attribute value of abstract action a corresponds to
the time moment of the latest final actions [τ = max(τ1, τ2)].

– Step 2: the completion condition of concrete action structure A
corresponds to the occurrence of all final actions, i.e., a1 ∧ a2. This
completion condition is the causality condition of concrete action b, i.e.,
{a1 ∧ a2 → b}. In the causality relation of abstract action b, that
causality condition is replaced by an enabling condition a, i.e., {a → b}.

It is however not always possible to abstract a concrete action structure

into an abstract action using the defined abstraction rules. This might be
because of
– incorrect refinement of an abstract action; or
– incorrect determination of the reference actions in the concrete action

structure.

4.2.3 Abstraction from repetitive behaviour instantiation

A repetitive behaviour instantiation (see Section 3.3.5) can create a finite or
infinite number of behaviour instances, depending on the condition for its
repetition. A repetitive behaviour instantiation that repeats an action for a
finite number of times can be considered as a result of causality refinement
or action refinement of an abstract action. Hence, this repetititive
behaviour instantiation can be abstracted back into that abstract action. The
abstraction is explained in the following sub-sections.

Abstraction from behaviour instantiation
A super behaviour may abstract from a behaviour instantiation. Indirect
attribute references via entry and exit points are replaced with direct

 BEHAVIOUR ABSTRACTION 97

attribute references. Figure 4-15 illustrates an abstraction from behaviour
instantiation B.

Repetitive behaviour instantiation as causality refinement
If a repetitive behaviour instantiation establishes a result as an aggregation
of the results of individual behaviour instantiations, it can be considered as
causality refinement. Such a repetitive behaviour instantiation that repeats
an action a for n times can be abstracted into an abstract action with
attributes:
– ι = an.ι = ∑ ak.ι ; where k = 1..n
– τ = an.τ
– λ = an.λ
Action an is action a in the n-th behaviour instance. Here the symbol ‘∑’
represents aggregation in general.

Figure 4-16 depicts an example of such a repetitive behaviour
instantiation that repeats behaviour B twice. An action c refers to parameter
values of the exit point of the last behaviour instance Bn.

B
b1 1a c

i = a.
n = 0

i = b.
n = entry1.n + 1

 = entry1.i × 2 = Bn.exit1.i + 3

entry1.n < 2

Figure 4-17 depicts a behaviour definifiton that includes two behaviour
instantiations B0 and B1 that are equivalent to repetitive behaviour
instantiation B in Figure 4-16. In behaviour instantiation B0, action b refers
to the information attribute of action a, i.e., [b.ι = entry1.i × 2] and
[entry1.i = a.ι], thus [b.ι = a.ι × 2]. In behaviour instantiation B1, action b
refers to the information attribute of action b of behaviour instantiation B0,
i.e., [b.ι = entry1.i × 2] and [entry1.i = B0.i], thus [b.ι = B0.i × 2].

Figure 4-15
Abstraction from
behaviour instantiation

Figure 4-16
Repetitive behaviour
instantiation

98 CHAPTER 4 INTERACTION DESIGN TRANSFORMATIONS

Figure 4-17 can be abstracted from behaviour instantiations B0 and B1.
This results in Figure 4-18(i). Actions b0 and b1 correspond to action b in
behaviour instantiations B0 and B1, respectively. Considering actions b0 as an
inserted action and b1 as a reference action, one can abstract from action b0
and obtain the behaviour in Figure 4-18(ii).

Repetitive behaviour instantiation as action refinement
If a repetitive behaviour instantiation establishes a set of results as a union
of the results of individual behaviour instantiations, it can be considered as
action refinement. Such a repetitive behaviour instantiation that repeats an
action a for n times can be abstracted into an abstract action with attributes:
– ι = ∪ ak.ι ; where k = 1..n
– τ = an.τ
– λ = ∪ ak.λ ; where k = 1..n

Figure 4-19 depicts an example of such a repetitive behaviour

instantiation that repeats behaviour B twice. An action c refers to parameter
values of the exit point of the last behaviour instance Bn.

Figure 4-20 depicts a behaviour definifiton that includes two behaviour
instantiations B0 and B1 that are equivalent to repetitive behaviour
instantiation B in Figure 4-19. In behaviour instantiation B0, action b refers
to the information attribute of action a, i.e., [b.ι = entry1.i[0] × 2] and
[entry1.i[0] = a.ι], thus [b.ι = a.ι × 2]. In the behaviour instantiation B1,
action b again refers to the information attribute of action a but via

Figure 4-17
Equivalent behaviour
instantiations

Figure 4-18
Abstraction from
inserted action

Figure 4-19
Repetitive behaviour
instantiation

 REFINEMENT OF AN ACTION INTO AN INTERACTION 99

parameter i[1] of the entry point. Behaviour instantiation B1 maintains
parameter values of the exit point of behaviour instantiation B0.

B0

b1 1a c

i[0] = a.
i[0] = entry1.i[0]
i[1] = b.

 = entry1.i[0] × 2 0 = B1.exit1.i[0] + 3
1 = B1.exit1.i[1] + 4

B1

b1 1

 = entry1.i[1] × 2

i[0] = b.
i[0] = B0.i[0]
i[1] = a.

Figure 4-20 can be abstracted from behaviour instantiations B0 and B1.
This results in Figure 4-21(i). Considering actions b0 and b1 as actions of a
concrete action structure with a single final action b1, one can abstract from
this concrete action structure and obtain the behaviour in Figure 4-21(ii).

4.3 Refinement of an action into an interaction

Section 3.3.2 explains that an interaction can be abstracted into an
integrated interaction and modelled as an action. Conversely, an action can
be refined into an interaction. The conjunction of the causality conditions
of interaction contributions of the interaction should be equivalent to the
causality condition of the action. Also, the conjunction of attribute
constraints of the interaction should be equivalent to attribute constraints
of the action. This refinement provides a basis for structuring a behaviour
into several interacting behaviours.

Figure 4-22 illustrates the structuring of behaviour B into interacting
behaviours B1 and B2. Action a is refined into interaction a whose
interaction contributions are a1 and a2. Action a can occur only after both
actions b and c occur. Similarly, interaction a can only occur after both
action b and c occur. The conjunction of the causality conditions of
interaction contributions a1 and a2 is equal to the causality condition of
action a.

Figure 4-20
Equivalent behaviour
instantiations

Figure 4-21
Abstraction from
concrete action structure

100 CHAPTER 4 INTERACTION DESIGN TRANSFORMATIONS

When action a occurs, an information attribute value between 3 and 7 is
established [3 < a.ι < 7]. When interaction a occurs, a value larger than 3
(contribution constraint of a1 [3 < a1.ι]) and lower than 7 (contribution
constraint of a2 [a2.ι < 7]) is established. The conjunction of the attribute
constraints of the interaction contributions a1 and a2 is equal to the
attribute constraint of action a.

4.4 Strategy for interaction refinement

In Section 3.1.2, three basic concepts for behaviour modelling are
identified, i.e., action, interaction, and causality relation. However, design
transformations presented in the previous sections support only two basic
types of behaviour refinement, i.e., action refinement and causality refinement.
Interaction refinement is not considered as a basic type of behaviour
refinement.

Interaction refinement is a type of behaviour refinement in which an
abstract interaction is replaced with multiple concrete interactions and their
causality relations. Using existing design transformations, it can be done
using the strategy that is depicted in Figure 4-23 [107]. In Step 1,
interacting behaviours BA1 and BA2 are integrated into abstract behaviour
BA. Interaction b is abstracted into an integrated interaction and modelled
as an abstract action b. In Step 2, abstract behaviour BA is refined into a
concrete behaviour BC. In this refinement, abstract action b is refined into a
concrete action structure consisting of actions b1 and b2. Finally, in Step 3,
concrete behaviour BC is decomposed using constraint-oriented behaviour
structuring into two interacting sub-behaviours BC1 and BC2. Actions b1
and b2 are refined into interactions b1 and b2, respectively.

Figure 4-22
Refinement of action
into interaction

 INTERACTION REFINEMENT 101

This strategy performs interaction refinement indirectly. An abstract

interaction b between abstract behaviours BA1 and BA2 is refined into
concrete interactions b1 and b2 between concrete behaviours BC1 and BC2.
The benefit of this strategy is that the design transformations presented in
the previous sections can be reused in interaction refinement.

This strategy, however, cannot preserve the information about the
distribution of responsibility. The attribute constraints of interaction
contributions model the responsibility of participants in the establishment
of an interaction result. In Step 1, when one abstracts interaction b into an
integrated interaction and models it as action b, the information about the
distribution of responsibility between behaviours BA1 and BA2 dissapears.

Consequently, in Step 3, the decomposition of concrete behaviour BC
into interacting sub-behaviours BC1 and BC2 can result in interactions b1
and b2 that do not preserve the distribution of responsibility as specified in
abstract interaction b. Support for direct interaction refinement that
preserves the distribution of responsibility between participants is therefore
necessary.

4.5 Interaction refinement

Interaction refinement allows one to model in more detail the activity that
is represented by an abstract interaction. Concrete interactions and their
causality relations are represented in a structure that is called a concrete
interaction structure.

Figure 4-23
Strategy for interaction
refinement

102 CHAPTER 4 INTERACTION DESIGN TRANSFORMATIONS

An abstract interaction specifies what result should be established. A
corresponding concrete interaction structure specifies how to establish that
result. To model abstract and concrete interactions, we use the ISDL
enhanced interaction concept as defined in Section 3.5.

For example, a purchase of a bicycle between a buyer and a seller is
modelled as an abstract interaction purchase as depicted in Figure 4-24 and
textually in Figure 4-25. Contribution and distribution constraints define
the result that should be established.

Buyer = {
√ → a,
a → buy (ι1 : Bicycle, ι2 : Money, τ : Date, λ : Store)

[ι1 = Bicycle XYZ,
ι2 < 500,
τ < 16.04.2010],

buy → b
}

Seller = {

√ → c,
c → sell (ι1 : Bicycle, ι2 : Money, τ : Day, λ : Store)

[ι2 > minPrice(ι1),
τ = [Mon, Tue, Wed, Thu, Fri, Sat]
λ= BikeShop, Enschede],

sell → d
}

purchase (buy: Buyer.buy, sell: Seller.sell)

[buy.ι1 = sell.ι1,
 buy.ι2 – fee = sell.ι2,
 dayOfWeek(buy.τ) = sell.τ,

buy.λ = sell.λ]

Figure 4-24
A purchase interaction
and its causality
relations with other
actions

Figure 4-25
Textual expression of
interacting behaviours in
Figure 4-24

 INTERACTION REFINEMENT 103

Figure 4-26 depicts a refinement of abstract interaction purchase into a
concrete interaction structure Purchase that consists of interactions select,
pay, and deliver. Interaction select models the selection of a bicycle by the
buyer from bicycles available in the seller’s shop. Interaction pay models the
payment of a selected bicycle. Interaction deliver models the delivery of a
purchased bicycle from the seller to the buyer. Concrete actions a, b, c, and
d correspond to abstract actions a, b, c, and d, respectively. Textual
expression of these interacting behaviours is depicted in Figure 4-27.

Buyer = {
√ → a,
a → sB (ι1 : Bicycle, ι2 : Price)

[ι1 = Bicycle XYZ,
ι2 + fee < 500],

sB → pB (ι1: Invoice, ι2 : Money, τ : Date)
[ι1 = sB.ι2,
ι2 = ι1 + fee,
τ < 16.04.2010],

sB → dB (ι : Bicycle, τ : Date, λ : Store)
[ι = sB.ι1,
τ < 16.04.2010],

pB ∧ dB → b
}

Seller = {

√ → c,
c → sS (ι1 : Bicycle, ι2 : Price)

[ι2 > minPrice(ι1)],

Figure 4-26
Refinement of
interaction purchase

Figure 4-27
Textual expression of
interacting behaviours in
Figure 4-26

104 CHAPTER 4 INTERACTION DESIGN TRANSFORMATIONS

sS → pS (ι1 : Invoice, ι2 : Money)
[ι1 = sS.ι2,
ι2 = ι1],

pS → dS (ι : Bicycle, τ : Day, λ : Store)
[ι = sS.ι1,
τ = [Mon, Tue, Wed, Thu, Fri, Sat],
λ =BikeShop, Enschede],

dS → d
}

select (sB: Buyer.sB, sS: Seller.sS) [remote]

pay (pB: Buyer.pB, pS: Seller.pS)

[pB.ι1 = pS.ι1,
 pB.ι2 – fee = pS.ι2]

deliver (dB: Buyer.dB, dS: Seller.dS)

[dB.ι = dS.ι,
 dayOfWeek(dB.τ) = dS.τ,

dB.λ = dS.λ]

For each participant, an abstract interaction contribution is replaced

with multiple concrete interaction contributions and their causality
relations. These concrete interaction contributions and causality relations
are represented in a structure that is called a concrete interaction contribution
structure. After selecting the bicycle to buy, the buyer is ready to pay for the
bicycle and to receive the delivery of the bicycle. The payment and delivery
can be done in arbitrary order. The seller requires that the payment should
be done before the delivery.

For example, abstract interaction contribution buy in Figure 4-24 is
replaced with a concrete interaction contribution structure consisting of
interaction contributions sB, pB, and dB in Figure 4-26. Attributes of the
abstract interaction contribution are distributed over the concrete
interaction contribution structure.

A concrete interaction structure may establish attribute values that are
not specified in an abstract interaction. These attribute values represent
intermediate results. For example, concrete interaction structure Purchase
establishes attribute values representing an invoice, i.e., pB.ι1 and pS.ι1,
which are not specified in abstract interaction purchase.

 INTERACTION REFINEMENT 105

4.5.1 Completion of a concrete interaction structure

The complete result of a concrete interaction structure is the union of the
results that are established by the concrete interactions in that concrete
interaction structure. For a participant, the results of the concrete
interactions in which the participant is involved or interested represent the
complete result from the participant’s view (see Section 3.5.1). For that
participant, the concrete interaction structure completes when the results
of those concrete interactions are available. The interaction contributions of
those concrete interactions that allow other actions of that participant to
refer to the results are called final interaction contributions of that participant.

In Figure 4-26, the complete result of concrete interaction structure
Purchase from the buyer’s view is {sB.ι1, sB.ι2, sB.τ, sB.λ, pB.ι1, pB.ι2, pB.τ,
pB.λ, dB.ι, dB.τ, dB.λ}. These attribute values can be referred to by other
actions of the buyer, e.g., action b, via two final interaction contributions pB
and dB. The complete result from the seller’s view is {sS.ι1, sS.ι2, sS.τ, sS.λ,
pS.ι1, pS.ι2, pS.τ, pS.λ, dS.ι, dS.τ, dS.λ}. These attribute values can be
referred to by other actions of the seller, e.g., action d, via a final interaction
contribution dS.

The interactions in which final interaction contributions are involved are
called final interactions. Final interactions of concrete interaction structure
Purchase are interaction pay (in which final interaction contributions pB of
the buyer is involved) and interaction deliver (in which final interaction
contributions dB of the buyer and dS of the seller are involved).

4.5.2 Configuration of final interaction contributions

Like in action refinement (see Section 4.1.2), three basic configurations of
final interaction contributions are identified:
– single final interaction contribution: a concrete interaction structure makes

its complete result available from a participant’s view when this final
interaction contribution occurs;

– conjunction of final interaction contributions: a concrete interaction structure
makes its complete result available from a participant’s view when all
these final interaction contributions occur;

– disjunction of final interaction contributions: a concrete interaction structure
makes its complete result available from a participant’s view when one
of these final interaction contributions occurs. Other final interaction
contributions do not occur.

An interaction contribution occurs when an interaction in which the
interaction contribution is involved occurs.

These basic configurations can be combined into a more complex
configuration of final interaction contributions. Different participants may
have different configurations of final interaction contributions.

106 CHAPTER 4 INTERACTION DESIGN TRANSFORMATIONS

The possible attribute values of an abstract interaction contributions
should be preserved in the attributes of concrete interaction contribution
structure. The interpretation of preservation of attribute values is similar to
the cases for action refinement, i.e., when interaction contributions are
considered as actions.

4.5.3 Correspondence relation

A correspondence relation between an abstract interaction and concrete
interaction structure shows which design information in a concrete
interaction structure that preserves which design information in an abstract
interaction. Specifically, it maps between
– the abstract participants and the concrete participants;
– the attributes of abstract interaction contributions and the attributes of

concrete interaction contributions; and
– the occurrences of the abstract interaction and the occurrences of one

or more concrete interactions.

Table 4-2 depicts the correspondence relation between abstract

interaction purchase and concrete interaction structure Purchase.

 Abstract interaction Concrete interaction structure

Buyer Buyer Participants
Seller Seller

buy.ι1 dB.ι
buy.ι2 pB.ι2

buy.τ max(pB.τ , dB.τ) a

buy.λ dB.λ

sell.ι1 dS.ι
sell.ι2 pS.ι2

sell.τ dS.τ

Attributes

sell.λ dS.λ
Occurrences purchase payment ∧ delivery b
a see Section 4.1.2 for explanation.
b The occurrence of an abstract interaction corresponds to the occurrence

of one or more final interactions of a concrete interaction structure. In a
correspondence relation, and-operator ‘∧’ indicates that all final
interactions must occur and or-operator ‘∨’ indicates that one of the
final interactions must occur. They should not be confused with a
conjunction and disjunction in causality relations.

Table 4-2
Correspondence relation
between abstract
interaction purchase and
concrete interaction
structure Purchase

 CONFORMANCE ASSESSMENT 107

4.6 Conformance assessment

A concrete interaction structure must conform to the abstract interaction it
replaces. Such a concrete interaction structure has more detailed design
information, while preserving what has been prescribed by the abstract
interaction. The conformance of a concrete interaction structure is assessed
by checking whether a set of conformance requirements are satisfied.

4.6.1 Causality context

Our conformance requirements make use of the notion of causality context
(as presented in Section 4.2.1). The causality context of an interaction
consists of actions and interaction contributions that are directly related to
the interaction, i.e.,
– actions and interaction contributions whose causality conditions contain

the interaction; and
– actions and interaction contributions that are defined in the causality

condition of the interaction.
As in Section 4.2.1, those actions are called context actions. The notion of
causality context can also be applied to an interaction contribution. The
causality context of an interaction q or an interaction contribution q is
denoted as Con(q).

In Figure 4-28, Con(q) = {B1.a, B1.b, B2.c, B2.d}, Con(B1.q) = {B1.a,
B1.b}, and Con(B2.q) = {B2.c, B2.d}.

B1 qa

b

B2q c

d

q

Similarly, the causality context of an interaction structure consists of
actions or interaction contributions that are directly related to the
interaction structure, i.e.,
– actions and interaction contributions whose causality conditions contain

interaction(s) of the interaction structure; and
– action and interaction contributions that are defined in the causality

condition of interactions of the interaction structure, excluding
interactions that are parts of the interaction structure.

The notion of causality context can also be applied to an interaction
contribution structure. The causality context of an interaction structure
consisting of interactions qi (i = 1, 2, …, n) is denoted as Con(q1, q2, …,
qn).

In Figure 4-29, Con(q1, q2) = {B1.a, B1.b, B2.c, B2.d}, Con(B1.q1,
B1.q2) = {B1.a, B1.b}, and Con(B2.q1, B2.q2) = {B2.c, B2.d}.

Figure 4-28
Interaction q and its
context actions

108 CHAPTER 4 INTERACTION DESIGN TRANSFORMATIONS

4.6.2 Conformance requirements

To determine the conformance between an abstract interaction and a
concrete interaction structure, the following conformance requirements are
identified. We refer to Figure 4-30 for illustration.

SellerBuyer
buy sell

purchase

1 : Bicycle
2 : Money | 2 > minPrice(i1)
 : Day | = [Mon, Tue, Wed, Thu, Fri, Sat]
 : Store | = BikeShop, Enschede

1 : Bicycle | 1 = Bicycle XYZ
2 : Money | 2 < 500
 : Date | < 16.04.2010
 : Store

buy. 1 = sell. 1

buy. 2 – fee = sell. 2

dayOfWeek(buy.) = sell.
buy. = sell.

a

b

c

d

– IR1: Preservation of causality relations. The causality relations between the
abstract interaction contribution of an abstract participant and its
abstract context actions should be preserved by the (indirect) causality
relations between the final interaction contribution(s) of the
corresponding concrete participant and the concrete actions that
implement the abstract context actions.
For the buyer, the final interaction contribution(s) of a correct concrete
interaction contribution structure should depend (indirectly) on the
concrete action that implements abstract action a; and the concrete
action that implements abstract action b should depend on those final
interaction contribution(s).
For the seller, the final interaction contribution(s) of a correct concrete
interaction contribution structure should depend (indirectly) on the
concrete action that implements abstract action c; and the concrete
action that implements abstract action d should depend on those final
interaction contribution(s).

– IR2: Preservation of contribution constraints. The contribution constraints of
the abstract interaction contribution of an abstract participant should be
preserved by the contribution constraints of the concrete interaction
contribution structure of the corresponding concrete participant
For the buyer, a correct concrete interaction contribution structure
should have contribution constraints defining that the item to buy

Figure 4-29
A concrete interaction
structure and its context
actions

Figure 4-30
A purchase interaction
as in Figure 4-24

 CONFORMANCE ASSESSMENT 109

should be a bicycle with a maximum price of EUR 500 (including fees,
if any); and that the purchase should occur before 16th April 2010 in a
store.
For the seller, a correct concrete interaction contribution structure
should have contribution constraints defining that the item to sell
should be a bicycle; that the bicycle should be sold at a price that is
higher than its minimum price; that the purchase should occur in any
day except Sunday; and that the purchase should occur at the seller’s
bicycle shop.

– IR3: Preservation of distribution constraints. The distribution constraints of
an abstract interaction should be preserved by the distributon
constraints, and possibly the contribution constraints, in a concrete
interaction structure.
A correct concrete interaction structure should have distribution
constraints, and possibly contribution constraints, defining that the
bicycle bought by the buyer should be the bicycle sold by the seller; that
the buying price minus some fee, if any, should be equal to the selling
price; and that the purchase should occur in the same day and in the
same store.

– IR4: Preservation of interaction synchronisation. The synchronisation that is
provided by an abstract interaction should be preserved by the
synchronisation that is provided by a concrete interaction structure.
A correct concrete interaction structure should define the time
dependencies of the concrete actions that implement abstract actions b
and d on the concrete actions that implement abstract actions a and c.

Relationships to conformance requirements for behaviour refinement
Table 4-3 shows the relationships between the conformance requirements
for general behaviour refinement (in Section 4.1.1) and for interaction
refinement.

Behaviour refinement Interaction refinement

BR1: preservation of causality relations IR1: preservation of causality relations
BR2: preservation of attribute values IR2: preservation of contribution constraints

IR3: preservation of distribution constraints
– IR4: preservation of interaction synchronisation

The causality target of a causality relation can be a target action or an

interaction contribution. Conformance requirement BR1 is concerned with
preservation of causality relations involving target actions. Conformance

Table 4-3
Relationships between
conformance
requirements for
behaviour refinement
and for interaction
refinement

110 CHAPTER 4 INTERACTION DESIGN TRANSFORMATIONS

requirement IR1 is concerned with preservation of causality relations
involving interaction contributions.

A result is represented by attribute values. It is specified by one or more
result constraints. In modeling, one specifies result constraints, not
attribute values. Therefore, conformance requirement BR2 should be taken
as ‘preservation of result constraints’.

In the conceptual model (as shown in Figure 3-44 in Section 3.6), result
constraint is specialised into contribution constraint and distribution constraint.
Conformance requirement BR2 is hence specialised into conformance
requirements IR2 and IR3, which deal with the contribution and
distribution constraints, respectively.

Interaction synchronisation is a property that is specific to an
interaction. Hence, conformance requirement IR4 is not related to
conformance requirements BR1 or BR2.

4.6.3 Assessment method

We define an assessment method for interaction refinement that uses the
same idea as the assessment method for general behaviour refinement
presented in Section 4.1.3. The conformance of the concrete interaction
structure can be assessed in the following steps, as illustrated in Figure
4-31.
1. Determine the abstraction of the concrete interaction structure. This

activity can be done by applying the abstraction rules and method
presented in Section 4.6.4 in order to obtain an abstract interaction that
is comparable to the original abstract interaction.

2. Compare the abstraction of the concrete interaction structure with the
original abstract interaction. This activity checks whether both abstract
interactions comply with a certain correctness relation. If this is the
case, the concrete interaction structure conforms to the original abstract
interaction. Otherwise, the concrete interaction structure does not
conform to the original abstract interaction.

Like the assessment method for general behaviour refinement, a
correctness relation can be

Figure 4-31
Conformance
assessment of
interaction refinement

 CONFORMANCE ASSESSMENT 111

– an equivalence relation: a concrete interaction structure preserves all
properties of an abstract interaction.

– a partial ordering relation: a concrete interaction structure preserves a
subset of the properties of an abstract interaction.

4.6.4 Interaction abstraction

Interaction abstraction is a behaviour abstraction in which a concrete
interaction structure is replaced with an abstract interaction. Given a
concrete interaction structure, one can abstract it in different ways,
resulting in different abstractions. Defining which design information in the
concrete interaction structure is considered essential in the abstraction is
therefore necessary. This design information has to be preserved when the
concrete interaction structure is abstracted into an abstract interaction.

A method for interaction abstraction consists of the following steps.
1. Determine design information that will be preserved. It consists of

– participants, which implement abstract participants; and
– attributes of the interaction contributions of the preserved

participants, which serve as the participants’ views on the result as
specified by an abstract interaction.

This design information can be found in a correspondence relation.
2. Check if every final interaction depends on the same concrete context

actions in the preserved participants. The final interactions can be found
in the correspondence relation. This is to check whether the concrete
interaction structure provides synchronisation as provided by an abstract
interaction, i.e, conformance requirement IR4. If so, there is a
possibility that the concrete interaction structure can be replaced with
an abstract interaction. Otherwise, it cannot.

3. For each preserved participant, replace its concrete interaction
contribution structure with an abstract interaction contribution. This is
done by applying the abstraction rules and methods defined in Section
4.2. The abstract interaction contribution should preserve attributes, as
identified in Step 1, and their possible values. A concrete interaction
structure can be replaced with an abstract interaction only if the
concrete interaction contribution structure in each preserved participant
can be replaced with an abstract interaction contribution.

4. Form an abstract interaction. This step consists of the following steps.
a. Connect all the abstract interaction contribution obtained in Step 4

to each other.
b. Determine distribution constraints of the abstract interaction from

the constraints in the concrete interaction structure. These
distribution constraints are composed from

112 CHAPTER 4 INTERACTION DESIGN TRANSFORMATIONS

– the distribution constraints in the concrete interaction structure
that involve the preserved attributes, and/or

– the contribution constraints of non-preserved participants that
allows a preserved attribute to refer indirectly to another
preserved attribute.

Attribute substitution is necessary to eliminate the attributes of non-
preserved participants from the distribution constraints of the
abstract interaction.

For illustration, we apply the abstraction method to the concrete

interaction structure Purchase in Figure 4-32. In Step 1, we determine that
participants Buyer and Seller should be preserved. The attributes of the
concrete interactions as indicated in Table 4-2 should be preserved as their
values correspond to the result of the abstract interaction.

Table 4-2 indicates that the final interactions are interactions pay and
deliver. In Step 2, we observe that final interaction pay depends on actions a
and c (via interaction select) and final interaction deliver depends on actions a
and c (via interaction select). Each final interaction depends on the same
context actions. Conformance requirement IR4 is satisfied.

Step 3 results in abstract interaction contributions q1 and q2 in abstract
participants Buyer and Seller, respectively, as depicted in Figure 4-33. The
correspondences between the attributes of the concrete and abstract
interaction contributions are listed in Table 4-4.

Figure 4-32
A concrete interaction
structure Purchase as in
Figure 4-26

 CONFORMANCE ASSESSMENT 113

Concrete interaction structure Abstract interaction

dB.ι q1.ι1

pB.ι2 q1.ι2

 pB.τ or dB.τ q1.τ

dB.λ q1.λ

dS.ι q2.ι1

pS.ι2 q2.ι2

dS.τ q2.τ

dS.λ q2.λ

Step 4 results in abstract interaction q in Figure 4-34. Information

attributes dB.ι and dS.ι are involved in the distribution constraint [dB.ι =
dS.ι]. Given the attribute correspondences in Table 4-4, this constraint can
be replaced with [q1.ι1 = q2.ι1]. Information attributes pB.ι2 and pS.ι2 are
involved in the distribution constraint [pB.ι2 – fee = pS.ι2]. This constraint
can be replaced with [q1.ι2 – fee = q2.ι2]. Time attributes dB.τ and dS.τ
are involved in the distribution constraint [dayOfWeek(dB.τ) = dS.τ]. This
constraint can be replaced with [dayOfWeek(q1.τ) = q2.τ]. Location
attributes db.λ and ds.λ are involved in the distribution constraint [dB.λ =
dS.λ]. This constraint can be replaced with [q1.λ = q2.λ].

Sections 4.7.2 and 4.7.4 show the examples of composing the
distribution constraints of an abstract interaction from the contribution
constraints of non-preserved participant.

Figure 4-33
Abstract interaction
contributions q1 and q2
obtained from Step 4

Table 4-4
Correspondences
between attributes of
concrete and abstract
interaction contributions

Figure 4-34
Abstract interaction q
obtained from Step 4

114 CHAPTER 4 INTERACTION DESIGN TRANSFORMATIONS

4.6.5 Comparison to original abstract interaction

In Section 4.6.2, four conformance requirements IR1, IR2, IR3, and IR4
are defined. During the abstraction process, conformance requirement IR4
is checked. When the abstraction of a concrete interaction structure can be
obtained, this means that conformance requirement IR4 is satisfied. The
comparison of the abstraction of the concrete interaction structure and the
original abstract interaction is necessary to check whether conformance
requirements IR1, IR2, and IR3 are satisfied.

In Figure 4-34, the causality relations involving abstract interaction
contributios are {a → q1, c → q2, q1 → b, q2 → d}. These causality
relations are equivalent to the causality relations {a → buy, c → sell, c →
sell, sell → d} respectively as depicted in Figure 4-24, in which interaction
contributions buy and sell are replaced with q1 and q2, respectively.
Conformance requirement IR1 is satisfied.

Contribution constraints of interaction q and contribution constraints of
interaction purchase are equivalent. Conformance requirement IR2 is
satisfied. Distribution constraints of interaction q and distribution
constraints of interaction purchase are equivalent. Conformance requirement
IR3 is satisfied.

All conformance requirements are satisfied. Interactions purchase and q
comply with an equivalence correctness relation. We conclude that the
concrete interaction structure Purchase conforms to abstract interaction
purchase.

4.7 Patterns for interaction refinement

To give guidelines on possible interaction refinement, we identify four
patterns for interaction refinement: interface decomposition, functionality
delegation, functionality distribution, and intermediary introduction. These patterns
are generic cases of interaction refinement. Each pattern captures a possible
way to refine an abstract interaction. Other patterns are possible.

An interaction refinement may apply one of those patterns or a
combination of them. In the following sections, those patterns are
described and illustrated. Context actions are shown in order to indicate
the relations between the resulting concrete interaction structure and its
context actions.

4.7.1 Interface decomposition

In this pattern, an abstract interaction between abstract participants is
replaced with a concrete interaction structure between concrete
participants that corresponds to the abstract participants. All participants

 PATTERNS FOR INTERACTION REFINEMENT 115

engage in every concrete interaction. This pattern allows one to replace an
abstract interaction with, e.g., a sequence of concrete interactions
representing intermediate steps to establish the result or a number of
alternative concrete interactions to establish the result. The concrete
interaction contributions in a concrete participant may form a structure
that differs from the structure of the concrete interaction contributions in
other concrete participants.

Figure 4-35 illustrates this pattern. An abstract interaction q between
participants B1 and B2 is replaced with a concrete interaction structure Q
consisting of interactions q1, q2, and q3 between concrete participants B1
and B2. Concrete participants B1 and B2 correspond to abstract
participants B1 and B2, respectively. The causality relations in participant
B1 differs from the causality relation in participant B2. Concrete context
actions a, b, c, and d correspond to abstract context actions a, b, c, and d,
respectively.

Example
The refinement of abstract interaction purchase in Figure 4-24 into a
concrete interaction structure Purchase in Figure 4-26 is an application of
this pattern. The seller implements the abstract interaction in three
sequential steps, i.e., select, pay and deliver. The buyer also implements the
abstract interaction in three similar steps, but interactions pay and deliver can
be done independent of each other.

The conformance assessment of the example is presented in Sections
4.6.4 and 4.6.5.

4.7.2 New participants introduction

In this pattern, an abstract interaction between abstract participants is
replaced with a concrete interaction structure that consists only of one
concrete interaction between concrete participants that corresponds to the

Figure 4-35
Interface decomposition
pattern

116 CHAPTER 4 INTERACTION DESIGN TRANSFORMATIONS

abstract participants and one or more new concrete participant(s). This
pattern allows one to delegate some functionality necessary to perform the
interaction to the new concrete participant(s). For example, by introducing
a bank, some functionality of a payment interaction can be delegated to that
bank.

Figure 4-36 illustrates this pattern. An abstract interaction q between
participants B1 and B2 is replaced with a concrete interaction structure
consisting of single concrete interaction q’ between concrete participants
B1, B2, and B3. Concrete participant B3 is introduced in the refinement.

Example
Figure 4-37 depicts a concrete interaction structure pay obtained from an
application of this pattern in the refinement of abstract interaction pay in
Figure 4-26. In the refinement, a bank is introduced. For brevity, the figure
shows only the concrete interaction and its context actions. The bank
charges the fee in interaction pay, as specified in the contribution constraint
of interaction contribution pK [pK.ι2 = pK.ι1 – fee]. As this functionality has
been delegated to the bank, the fee is no longer specified in any distribution
constraint. Table 4-5 depicts the correspondence relation between abstract
interaction pay and concrete interaction pay’.

Figure 4-36
Functionality delegation
pattern

 PATTERNS FOR INTERACTION REFINEMENT 117

 Abstract interaction Concrete interaction structure

Buyer Buyer Participants
Seller Seller

pB.ι1 pB.ι1

pB.ι2 pB.ι2

pB.τ pB.τ

pS.ι1 pS.ι1

Attributes

pS.ι2 pS.ι2
Occurrences pay pay'

The conformance assessment is described as follows. In Step 1, we

determine that participants Buyer and Seller and attributes pB.ι1, pB.ι2, pS.ι1,
and pS.ι2 are the design information that should be preserved.

In Step 2, we observe that the only interaction pay’ depends on context
action sB of Buyer and sS of Seller. Conformance requirement IR4 is satisfied.

Step 3 results in abstract interaction contributions q1 and q2 in abstract
participants Buyer and Seller, respectively. The correspondences between the
attributes of the concrete and abstract interaction contributions are listed in
Table 4-4.

Concrete interaction Abstract interaction

pB.ι1 q1.ι1

pB.ι2 q1.ι2

pB.τ q1.τ

pS.ι1 q2.ι1

pS.ι2 q2.ι2

In Step 4, we observe that information attributes pB.ι and pS.ι are

involved in distribution constraint [pB.ι = pS.ι]. Given the attribute
correspondences in Table 4-6, this constraint can be replaced with [q1.ι1
= q2.ι1]. Information attribute pB.ι2 and pS.ι2 are involved in distribution

Figure 4-37
Example of functionality
delegation

Table 4-5
Correspondence relation
between abstract
interaction pay and
concrete interaction pay'

Table 4-6
Correspondences
between attributes of
concrete and abstract
interaction contributions

118 CHAPTER 4 INTERACTION DESIGN TRANSFORMATIONS

constraints [pB.ι2 = pK.ι1] and [pS.ι2 = pK.ι2], respectively; while pK.ι1 and
pK.ι2 are involved in contribution constraint [pK.ι2 = pK.ι1 – fee].
Substituting pB.ι2 and pB.ι2 for pK.ι1 and pK.ι2 in the contribution
constraint, respectively, results in [pS.ι2 = pB.ι2 – fee]. This constraint can
be replaced with [q2.ι2 = q1.ι2 – fee]. Time attribute pB.τ is not involved
in any distribution constraint. No distribution constraint of the abstract
interaction can be specified for this time attribute.

The application of the abstraction method results in an abstract
interaction that has an equivalence correctness relation with abstract
interaction pay. Concrete interaction pay’ conforms to abstract interaction
pay.

4.7.3 Bilateral interactions transformation

In this pattern, an abstract interaction between three or more abstract
participants is replaced with a concrete interaction structure in which every
concrete interaction is performed by exactly two concrete participants that
implement the abstract participants, i.e., a bilateral interaction. The
functionality of the abstract interactions is distributed over interactions
between pairs of concrete participants.

In an implementation, interactions are carried out by interaction
mechanisms provided by, e.g., communication middleware. Current
middleware mostly supports interaction mechanisms between two entities.
This pattern allows one to replace an abstract interaction with a concrete
interaction structure that will be implemented using such interaction
mechanisms.

Figure 4-38 illustrates this pattern. An abstract interaction q between
abstract participants B1, B2, and B3 is replaced with a concrete interaction
structure consisting of interactions q1, q2, and q3. Concrete interaction q1
is an interaction between concrete participants B1 and B2; concrete
interaction q2 is an interaction between concrete participants B1 and B3;
and concrete interaction q3 is an interaction between concrete participants
B2 and B3. Each concrete interaction is performed by two concrete
participants only.

 PATTERNS FOR INTERACTION REFINEMENT 119

Example
Figure 4-39 depicts a concrete interaction structure Pay obtained from an
application of this pattern in the refinement of interaction pay in Figure
4-37. The seller first makes a payment request by sending an invoice to the
buyer. The buyer then interacts with the bank to transfer the requested
amount of money plus a transfer fee. After transfering the money, the buyer
sends a notification indicating the date the money is transfered. The seller
then checks her bank account’s balance. If the money she received is equal
to the money she requested, the seller confirms the buyer that the payment
is successful. Table 4-7 depicts the correspondence relation between
abstract interaction pay’ and concrete interaction Pay.

Figure 4-38
Functionality distribution
pattern

120 CHAPTER 4 INTERACTION DESIGN TRANSFORMATIONS

 Abstract interaction Concrete interaction structure

Buyer Buyer
Seller Seller

Participants

Bank Bank

pB.ι1 vB.ι
pB.ι2 tB.ι
pB.τ mB.τ

pS.ι1 vS.ι
pS.ι2 cS.ι1

pK.ι1 tK.ι

Attributes

pK.ι2 cK.ι1
Occurrences pay' confirm ∧ check

The conformance assessment is described as follows. In Step 1, we

determine that participants Buyer, Seller, and Bank and attributes vB.ι, tB.ι,
mB.τ, vS.ι, cS.ι1, tK.ι, and cK.ι are the design information that should be
preserved.

In Step 2, we observe that each final interaction depends on the same
context actions, i.e., sB of Buyer, sS of Seller, and the start condition in
participant Bank. Conformance requirement IR4 is satisfied.

Step 3 results in abstract interaction contributions q1, q2, and q3 in
abstract participants Buyer, Seller, and Bank, respectively. The
correspondences between the attributes of the concrete and abstract
interaction contributions are listed in Table 4-8.

Figure 4-39
Example of functionality
distribution

Table 4-7
Correspondence relation
between abstract
interaction pay’ and
concrete interaction
structure Pay

 PATTERNS FOR INTERACTION REFINEMENT 121

Concrete interaction structure Abstract interaction

vB.ι q1.ι1

tB.ι q1.ι2

mB.τ q1.τ

vS.ι q2.ι1

cS.ι1 q2.ι2

tK.ι q3.ι1

cK.ι1 q3.ι2

In Step 4, we observe that information attributes vB.ι and vS.ι are

involved in distribution constraint [vB.ι = vS.ι] that is implicit in remote
interaction invoice. Given the attribute correspondences in Table 4-8, this
constraint can be replaced with [q1.ι1 = q2.ι1]. Information attribute tB.ι
and tK.ι are involved in distribution constraints [tB.ι = tK.ι] that is implicit
in remote interaction transfer. This constraint can be replaced with [q1.ι2 =
q3.ι1]. Information attribute cS.ι1 and cK.ι1 are involved in distribution
constraints [cS.ι1 = cK.ι1] that is implicit in remote interaction check. This
constraint can be replaced with [q2.ι2 = q3.ι2]. Time attribute mB.τ is not
involved in any distribution constraint. No distribution constraint of the
abstract interaction can be specified for this time attribute.

The application of the abstraction method results in an abstract
interaction that has an equivalence correctness relation with abstract
interaction pay’. Concrete interaction Pay conforms to abstract interaction
pay’.

4.7.4 Intermediary introduction

In this pattern, an abstract interaction between abstract participants is
replaced with a concrete interaction structure that involves a new concrete
participant acting as an intermediary between the concrete participants that
correspond to the abstract participants. Concrete participants that
correspond to the abstract participants interact only with the intermediary.
Concrete participants do not interact directly, but via the intermediary.

This pattern allows one to put most of the collaboration logic in an
intermediary, to keep simple the concrete participants that correspond to
abstract participants. For example, in an interaction for a reservation of a
holiday trip between a traveller, a hotel, and an airline, a travel agent can be
introduced as an intermediary to carry out the negotiation between them.

This pattern also allows one to include the behaviour of communication
middleware that enables interactions between concrete participants across
distances. For example, an interaction for an online insurance application
between a customer and an insurance company will be implemented using
an asynchronous request-response mechanism based on callback. The

Table 4-8
Correspondences
between attributes of
concrete and abstract
interaction contributions

122 CHAPTER 4 INTERACTION DESIGN TRANSFORMATIONS

inclusion of the behaviour of this interaction mechanism allows designers to
model necessary interaction contributions to accommodate that interaction
mechanism.

Figure 4-40 illustrates this pattern. An abstract interaction q between
abstract participants B1 and B2 is replaced with a concrete interaction
structure consisting of interaction q1, q2, q3, and q4. Concrete participant
B3 is introduced as an intermediary between concrete participants B1 and
B2. Concrete interactions q1 and q4 are between concrete participants B1
and B3. Concrete interaction q2 and q3 are between concrete participants
B2 and B3.

B3B1 q1a

b

B2q2 c

dq4 q3

q1

q4

q1

q4

q2

q3

q2

q3

B1 qa

b

B2q c

d

q

Example
Figure 4-41 depicts a concrete interaction structure Confirm obtained from
an application of this pattern in the refinement of interaction confirm in
Figure 4-39. This abstract interaction is implemented using a provider-
confirmed message-passing mechanism. The seller first interacts with the
middleware to send a confirmation message, i.e., “OK”. The middleware
then interacts with the buyer to pass that confirmation message. Finally, the
middleware gives the seller an acknowledgment “ACK” indicating that the
confirmation message has been passed successfully. Table 4-9 depicts the
correspondence relation between abstract interaction confirm and concrete
interaction Confirm.

Figure 4-40
Intermediary
introduction pattern

Figure 4-41
An example of
intermediary
introduction

 PATTERNS FOR INTERACTION REFINEMENT 123

 Abstract interaction Concrete interaction structure

Buyer Buyer Participants
Seller Seller

mB.ι iB.ι
mB.τ iB.τ

Attributes

mS.ι rS.ι
Occurrences confirm ind ∧ cnf

The conformance assessment is described as follows. In Step 1, we

determine that participants Buyer and Seller and attributes iB.ι, iB.τ, and rS.ι
are the design information that should be preserved.

In Step 2, we observe that each final interaction depends on the same
context actions, i.e., nB of Buyer and cS of Seller. Conformance requirement
IR4 is satisfied.

Step 3 results in abstract interaction contributions q1and q2 in abstract
participants Buyer and Seller, respectively. The correspondences between the
attributes of the concrete and abstract interaction contributions are listed in
Table 4-10.

Concrete interaction structure Abstract interaction

iB.ι q1.ι
iB.τ q1.τ

rS.ι q2.ι

In Step 4, we observe that information attributes iB.ι is involved in

distribution constraint [iB.ι = iM.ι] that is implicit in the remote interaction
ind. Information attribute rS.ι is involved in distribution constraint [rS.ι =
rM.ι] that is implicit in remote interaction req. Information attribute iM.ι
and rM.ι are involved in contribution constraint [iM.ι = rM.ι]. Substituting
iB.ι and rS.ι for iM.ι and rM.ι in this contribution constraint, respectively,
results in [iB.ι = rS.ι]. Given the attribute correspondences in Table 4-10,
this constraint can be replaced with [q1.ι = q2.ι].

Time attribute iB.τ is involved in distribution constraint [iB.τ = iM.τ],
but iM.τ. does not refer to or is not referred to by any other preserved time
attribute. No distribution constraint of the abstract interaction can be
specified for this time attribute.

The application of the abstraction method results in an abstract
interaction that has an equivalence correctness relation with abstract
interaction confirm. Concrete interaction Confirm conforms to abstract
interaction confirm.

Table 4-9
Correspondence relation
between abstract
interaction confirm and
concrete interaction
structure Confirm

Table 4-10
Correspondences
between attributes of
concrete and abstract
interaction contributions

124 CHAPTER 4 INTERACTION DESIGN TRANSFORMATIONS

4.8 Related work

The MDA [90, 91] uses the idea of abstraction and refinement to allow
“zooming” in and out of a model. Our work contributes to this area by
providing a set of conformance requirements, an abstraction method, and a
set of abstractions of interaction mechanisms.

Similar to [83, 114], our work considers an interaction as a first-class
entity in a design process. Such an interaction can be used as a starting
point for design refinement. Interaction refinement and its conformance
assessment in [4] use the same assessment method as in Section 4.6.3.
However, it does not define any conformance requirement or systematic
abstraction method. Our work provides conformance requirements and a
systematic abstraction method. Our work contributes to research towards
interaction refinement, such as in [3, 27, 72], by providing interaction
design transformations in the architectural domain.

In general, correct implementations can be obtained using two different
refinement approaches: correctness-by-construction and correctness-by-assessment.
In the first approach, as used in [43, 83], refinement is done by applying
rules to construct correct implementations. This way of refinement
however limits designers’ freedom because an implementation can only be
obtained from an application of (a combination of) these rules. Our work
supports the second approach, in which designers construct an
implementation without necessarily following any refinement rule and
assess the correctness of the implementation afterwards. If an
implementation does not satisfy a set of correctness requirements, the
implementation should be revisited and redeveloped. We believe that this
refinement approach gives designers more freedom.

Our patterns of interaction refinement indicate possible ways of
refinement without defining any refinement rule. These are not refinement
rules as in [83]. Thus, a concrete interaction structure obtained from the
application of our patterns may not conform to an abstract interaction.
Conformance assessment should be performed on that concrete interaction
structure.

An abstract interaction can be refined into a concrete interaction
structure that complies with a structure defined as interaction patterns in
[16, 54, 70]. Our work can be useful to check whether an interaction
pattern used in an implementation results in a correct refinement.

[13, 126] present refinement of an interaction point in the entity
domain. Interaction refinement in the behaviour domain is briefly discussed
as its consequence. Our work can complement this work by providing
interaction refinement in the behaviour domain.

 CONCLUDING REMARKS 125

4.9 Concluding remarks

In this chapter, we have presented behaviour transformations, i.e.,
refinement and abstraction, in ISDL. Interaction refinement was done
indirectly in three steps. First, interacting behaviours are integrated into an
abstract behaviour. Second, the abstract behaviour is refined into a concrete
behaviour using action refinement and/or causality refinement. Finally, the
concrete behaviour is decomposed using constraint-oriented behaviour
structuring into interacting sub-behaviours. We have found out that this
indirect interaction refinement cannot preserve the distribution of
responsibility between participants. We have, therefore, defined direct
interaction refinement that can maintain distribution of responsibility
during the design process. A conformance assessment for interaction
refinement is also defined.

In Section 3.1.2, three basic concepts for behaviour modelling were
identified, i.e., action, interaction, and causality relation. However, ISDL
supported only action refinement and causality refinement. Together with
the interaction refinement presented in this chapter, refinement of all basic
concepts is now supported. Concepts and methods, that have been defined
for action and causality refinement, are reused in interaction refinement so
as to give designers consistent ways of designing behaviours of distributed
systems. Table 4-11 lists basic concepts in the behaviour domain and their
support for behaviour refinement.

Basic concept Behaviour refinement

Action Action refinement
Interaction Interaction refinement
Causality relation Causality refinement

Table 4-11
Refinement of the basic
concepts in the
behaviour domain

Chapter 5

5. Abstract representations of
interaction mechanisms

This chapter presents abstract representations of common interaction
mechanisms that are suitable for modelling service compositions and
distributed applications in general at higher abstraction levels. The abstract
representations are obtained by applying the abstraction method defined in
Chapter 4. This chapter is organised as follows: Section 5.1 motivates the
need for suitable abstract representations of interaction mechanisms.
Section 5.2 presents the approach we use to obtain abstract representations
of interaction mechanisms. Section 5.3 shows how we apply the approach
and our interaction abstraction method to obtain those abstract
representations. Section 5.4 illustrates the use of the abstract
representations in an example. Section 5.5 discusses related work. Finally,
Section 5.6 presents some concluding remarks.

5.1 Motivation

The design of a service composition is a complex undertaking, especially if a
designer is forced to deal immediately with the detailed behaviour of
interaction mechanisms provided by communication middleware. It would
be better if the designer could first focus on the essentials of the service
composition using suitable abstract representations of interaction
mechanisms.

In a service composition, service users and providers interact with each
other. These service users and providers may be physically and
geographically distributed. Communication middleware is therefore
necessary to carry out the interactions between them. It provides generic
interaction mechanisms, e.g., message passing and request-response
interaction mechanisms, with which the interactions can be implemented.

128 CHAPTER 5 ABSTRACT REPRESENTATIONS OF INTERACTION MECHANISMS

Unfortunately, the detailed behaviour of interaction mechanisms
contributes to the complexity of interactions in service compositions. When
designing the interaction between service users and providers, a designer
has to consider
– the characteristics of the interaction; and
– the behaviour of the interaction mechanism(s) that will be used to

implement that interaction.

The interaction between a customer and a bank for an on-line loan

application, for example, can be implemented either as synchronous or
asynchronous request-response communication. The characteristic of this
loan application interaction, i.e., the bank needs a couple of days to
respond, leads the designers to choose the asynchronous request-response
communication based on callback for implementing the interaction. The
behaviour of this asynchronous communication has to be elaborated in the
interaction design. This elaboration increases the complexity of the design.
Such complexity makes it difficult to separate the behaviour of the
interaction mechanism from the business or application logic of the
interaction.

The use of related abstraction levels, as described in Chapter 1, allows a
designer to first focus on the essentials of interactions between services,
deferring the decision about possible alternative implementations to a later
stage of the design process. At a high abstraction level, a designer defines
only the intended result and requirements on the interaction and not the
behaviour of the interaction mechanism that implements it. This approach
needs a suitable abstract representation of the interaction mechanism.

Such an abstract representation should satisfy the following
requirements [34].
– Suitability. An abstract representation of an interaction mechanism

should be easy to use. In this thesis, an abstract representation is easy to
use if it represents an interaction mechanism using a single interaction
concept.

– Platform independence. An abstract representation of an interaction
mechanism should not be specific to an implementation in a particular
middleware platform. A platform-independent abstraction gives
designers more implementation alternatives.

– Correctness. An abstract representation of an interaction mechanism
should preserve the essential properties and represent correctly the
behaviour of the interaction mechanism. This requirement means that
the abstract representation can be refined back into the interaction
mechanism.

 APPROACH 129

5.2 Approach

In this section, we present our approach to obtain suitable representations
of interaction mechanisms. We focus on the interaction mechanisms
provided by CORBA [89] and Web Services [133].

5.2.1 Suitability and platform independence

In order to satisfy the requirements for suitability and platform
independence, we follow the abstraction hierarchy as depicted in Figure
5-1.

In Step 1, we represent the behaviour of the CORBA and Web Services
interaction mechanisms that are comparable to each other as an interaction
structure that is independent of the details of the middleware platforms.
We call that structure an interaction pattern because it models the similarity
between the interaction mechanisms. This step results in a platform-
independent interaction pattern.

Two interaction mechanisms are comparable to each other if the
differences between them are not essential at a higher abstraction level. If
the differences between them are essential, those interaction mechanisms
are considered and modelled as two different interaction patterns. For
example, the unconfirmed and provider-confirmed message-passing
mechanisms have similarities, i.e., they pass a message from a sender to a
receiver, but we consider that the differences between them are essential.
Thus, we model them as two different interaction patterns.

In Step 2, if possible, we abstract an interaction pattern into an abstract
interaction that is defined using the ISDL enhanced interaction concept. In
this way, we can represent multiple interaction mechanisms by a single
abstract concept and, therefore, satisfy the requirement of suitability as
defined in Section 5.1. Since the interaction pattern is platform
independent, its abstraction is also platform independent. The requirement
of platform independence is also satisified.

Figure 5-1
Abstraction hierarchy

130 CHAPTER 5 ABSTRACT REPRESENTATIONS OF INTERACTION MECHANISMS

5.2.2 Correctness

In order to satisfy the requirement for correctness, we use the conformance
requirements defined in Section 4.6.2:
– IR1: preservation of causality relations
– IR2: preservation of contribution constraints
– IR3: preservation of distribution constraints
– IR4: preservation of interaction synchronisation.

These conformance requirements, however, need a different

interpretation because they are based on the properties of an interaction,
not an interaction. The properties of an interaction cannot be found
immediately in an interaction structure. The interpretation is explained in
the following. We refer to Figure 5-2 for illustration. This figure depicts an
interaction structure that represents the synchronous request-response
mechanism between a client and server via communication middleware. For
brevity, attribute types are omitted.

req

cnf

Middleware ServerClient

reqC reqM

cnfC cnfM

indM indS

 = a. = reqM.

rspM rspS

 = rspM. = f(indS. , c.)

a

b

c

d

ind

rsp

distribution
constraints

contribution
constraints

contribution
constraints

The participants, that interact indirectly with each other via
communication middleware, are called remote participants. In Figure 5-2,
participants Client and Server are remote participants.

We aim to represent an interaction structure as an abstract interaction
that abstracts from the detailed behaviour of the communication
middleware. A remote participant is to be abstracted into an abstract
participant. The interaction contribution structure in a remote participant
is to be abstracted into an abstract interaction contribution in the
corresponding abstract participant. Remote participants Client and Server in
Figure 5-2 are to be abstracted into abstract participants Client and Server,
respectively.

Attributes that represent essential information according to the purpose
of the interaction mechanism should be preserved. Only such attributes in
the remote participants are preserved. The interaction contributions of a
remote participant that allow other actions of that remote participant to

Figure 5-2
Contribution and
distribution constraints
in an interaction
structure

 APPROACH 131

refer to the preserved attributes are the final interaction contributions of
that remote participant. The interactions in which final interaction
contributions are involved are the final interactions of the interaction
structure.

In Figure 5-2, the purpose of a request-response mechanism is to
establish a response message for a given request message. These messages
are essential in the interaction mechanism. Therefore, information
attributes that represent these messages should be preserved. The request
message is represented by information attribute reqC.ι and indS.ι; the
response message is represented by information attribute cnfC.ι and rspS.ι.
The final interaction contributions are cnfC and rspS in remote participants
Client and Server, respectively. The final interactions are hence cnf and rsp.

We model the causality context of an interaction mechanism as context
actions a, b, c, and d. These context actions allow us to focus on an
interaction structure without neglecting the dependencies between the
interaction structure and its causality context. Context actions a, b, c, and d
are to be abstracted into abstract context actions a, b, c, and d, respectively.

IR1: preservation of causality relations
The (indirect) causality relations between the final interaction contributions
of a remote participant and the context actions should be preserved by the
causality relations between the abstract interaction contribution of the
corresponding abstract participant and the abstract actions that represent
the context actions.

In Figure 5-2, the (indirect) causality relations between final interaction
contribution cnfC and context actions a and b in remote participant Client
should be preserved by the causality relations between the abstract
interaction contribution and abstract context actions a and b in abstract
participant Client. The (indirect) causality relations between final interaction
contribution rspS and context actions c and d in remote participant Server
should be preserved by the causality relations between the abstract
interaction contribution and abstract context actions c and d in abstract
participant Server.

IR2: preservation of contribution constraints
The contribution constraints that specify the possible values of the
preserved attributes of the interaction contribution structure in a remote
participant should be preserved by the contribution constraints of the
abstract interaction contribution of the corresponding abstract participant.

In Figure 5-2, the contribution constraints of preserved information
attributes reqC.ι and cnfC.ι in remote participants Client should be preserved
by the contribution constraints of the abstract interaction contribution in
abstract participants Client. The contribution constraints of preserved

132 CHAPTER 5 ABSTRACT REPRESENTATIONS OF INTERACTION MECHANISMS

information attributes indS.ι and rspS.ι in remote participants Server should
be preserved by the contribution constraints of the abstract interaction
contribution in abstract participants Server.

IR3: preservation of distribution constraints
In an interaction structure, the relations between the attribute values in
different remote participants are defined by
– the distribution constraints of the interactions between the

communication middleware and remote participants; and
– the contribution constraints of the interaction contributions of the

communication middleware.
The distribution and contribution constraints that define the relations
between the preserved attributes in different remote participants should be
preserved by the distribution constraints of the abstract interaction.

In Figure 5-2, the relation between the values of preserved information
attributes reqC.ι and indS.ι in remote participant Client and Server,
respectively, is defined by distribution constrains [reqC.ι = reqM.ι] and
[indM.ι = indS.ι] of interactions req and ind (specified implicitly as local
interactions) and contribution constraints [indM.ι = reqM.ι] of interaction
contribution indM of the middleware. These distribution and contribution
constraints should be preserved by the distribution constraints of the
abstract interaction.

IR4: preservation of interaction synchronisation
An interaction structure can be represented as an abstract interaction only if
it provides time dependency as in an interaction. This dependency requires
that every final interaction (indirectly) depends on the same context
actions.

In Figure 5-2, final interaction contribution cnfC of remote participant
Client indirectly depends on context action a. Final interaction contribution
rspS of remote participant Server indirectly depends on context action c. This
interaction mechanism can be abstracted into an abstract interaction if
every final interaction, i.e., cnf and rsp, depends on the set of context actions
{a, c}.

5.2.3 Other interaction mechanism properties

The following properties of an interaction mechanism are not modelled
(explicitly).

Time and location attributes
In an interaction structure, an interaction between a remote participant and
the middleware establishes the same set of information values that are

 ABSTRACTIONS OF INTERACTION MECHANISMS 133

available from the same time moment and at the same location for the
remote participant and middleware. We hence model the interaction as a
local interaction (see Section 3.7.1).

The specifications of the CORBA and Web Services interactions
mechanisms do not include constraints regarding time, e.g., delay or
throughput, we hence do not include constraints on time attribute. Such
constraints can be useful for modelling the quality of service (QoS) that is
required from communication middleware. We leave this for future work.

We assume that all interactions between a remote partipant and
communication middleware occur at the same location or address. For
brevity, we do not include location attributes and constraints in the
interactions.

Exceptions
An interaction mechanism may return an exception message when it cannot
complete successfully. For example, in the CORBA synchronous request-
response mechanism, an exception message can be returned to the client
either by the server or middleware. An exception message returned by the
server indicates that the server cannot process the request message sent by
the client. An exception message returned by the middleware indicates that
a problem occurs in the communication.

At a higher abstraction level, a designer may only be interested in
whether an interaction occurs or does not occur, without considering any
exception messages that might return. Moreover, the behaviours related to
exception messages are middleware-specific. For example, in the Web
Services synchronous request-response mechanism, the middleware cannot
return an exception. To satisfy the requirement for platform independence,
we exclude the behaviours that are related to exception messages. This
exclusion can be done only if the exception messages have no function at an
abstract level, i.e., they carry no essential information. We leave the
inclusion of exception behaviour for future work.

5.3 Abstractions of interaction mechanisms

In this section, we present the applications of the interaction abstraction
method defined in Chapter 4 to obtain abstract representations of common
interaction mechanisms.

An interaction mechanism distinguishes different roles for its
participants. A role determines the behaviour that a participant should
perform to interact with other participant(s) using the interaction
mechanism.

134 CHAPTER 5 ABSTRACT REPRESENTATIONS OF INTERACTION MECHANISMS

In the following sub-sections, a remote participant is named with the
role it plays in an interaction mechanism. For example, a remote
participant that plays the role of a client is named Client. It should be noted
that the role is not attached to the participant, but to the contribution of
the participant in the interaction mechanism. Therefore, in an interaction
structure in which remote participants interact with each other using more
than one interaction mechanisms, a remote participant can play the role of
a client in one interaction mechanism and the role of a server in another
interaction mechanism.

5.3.1 Unconfirmed message-passing

The purpose of this interaction mechanism is to pass a message from a
sender to a receiver. The sender sends a message to the receiver and then
continues its execution. In CORBA, this interaction mechanism is
implemented using ‘oneway’ request-response communication. In Web
Services, this interaction mechanism is implemented using ‘one-way’
operation.

The interaction pattern in Figure 5-3(i) models this interaction
mechanism. Interaction req passes a message from the sender to the
middleware. The sender determines the contents of this message [reqS.ι =
fS(a.ι)]. Interaction ind passes that message from the middleware to the
receiver [indM.ι = reqM.ι].

We want to abstract the interaction pattern in Figure 5-3(i) into an
abstract interaction in Figure 5-3(ii). The interaction abstraction method is
applied as follows.

Step 1:
The design information that should be preserved is:

Figure 5-3
Unconfirmed message-
passing and its intended
abstract representation

 ABSTRACTIONS OF INTERACTION MECHANISMS 135

– remote participants Sender and Receiver; and
– information attributes reqS.ι and indR.ι as they represent the message

that is passed from remote participants Sender to Receiver.
The relation between the preserved information attributes can be expressed
as a single constraint [reqS.ι = indR.ι]. The calculation to derive this
constraint is shown in Figure 5-4.

reqS.ι = reqM.ι ; local interaction req
indM.ι = reqM.ι ; interaction contribution indM
indM.ι = indRι ; local interaction ind
reqS.ι = indR.ι

The final interaction contributions in remote participants Sender and
Receiver are reqS and indR, respectively. The final interactions of this
interaction pattern are hence interactions req and ind. Final interaction
contributions reqS and indR depend on context actions a and c, respectively.

Step 2:
Final interaction req depends only on context action a. Final interaction ind
depends on context action a via interaction req and on context action c. This
means that final interactions req and ind do not depend on the same context
actions. Conformance requirement IR4 is therefore not satisfied. This
interaction mechanism cannot be abstracted into a single abstract
interaction.

To facilite interaction design, this interaction mechanism can be
expressed using the shorthand notation for message-passing communication
(see Section 3.7.3) because they have the same behaviour. This shorthand
notation does not abstract from any design information of the message-
passing interaction mechanism.

5.3.2 Provider-confirmed message-passing

The purpose of this interaction mechanism is to pass a message from a
sender to a receiver. The sender sends a message to the receiver and then
waits for a confirmation from the middleware that indicates that the
message has been delivered to the receiver. The sender continues its
execution only after it receives that confirmation.

The interaction pattern in Figure 5-5 models this interaction
mechanism. Interaction req passes a message from the sender to the
middleware [reqS.ι = fS(a.ι)]. Interaction ind passes that message from the
middleware to the receiver [indM.ι = reqM.ι]. Interaction cnf confirms to
the sender that the message has been delivered to the receiver [cnfM.ι =
fM(indM.ι)].

Figure 5-4
Calculation to derive the
relation between the
preserved information
attributes in the
unconfirmed message
passing

136 CHAPTER 5 ABSTRACT REPRESENTATIONS OF INTERACTION MECHANISMS

The interaction abstraction method is applied as follows.

Step 1:
The design information that should be preserved is:
– remote participants Sender and Receiver; and
– information attributes reqS.ι and indR.ι as they represent the message

that is passed from remote participants Sender to Receiver.
As in Section 5.3.1, the relation between the preserved information
attributes can be expressed as a single constraint [reqS.ι = indR.ι].

The final interaction contributions in remote participants Sender and
Receiver are cnfS and indR, respectively. The final interactions of this
interaction pattern are hence interactions cnf and ind. Final interaction
contribution cnfS indirectly depends on context action a. Final interaction
contribution indR depends on context action c.

Step 2:
Final interaction cnf depends on context action a via interaction req and on
context action c via interaction ind. Final interaction ind depends on context
action a via interaction req and on context action c. Every final interaction
depends on the same context actions. Conformance requirement IR4 is
satisfied.

Steps 3 and 4:
These steps result in abstract interaction q between abstract participants
Sender and Receiver, as depicted in Figure 5-6. Abstract interaction
contributions qS and qR represent the interaction contribution structures in
remote participant Sender and Receiver, respectively. Table 5-1 lists the
correspondences between the design information of the interaction pattern
and abstract interaction. Conformance requirement IR1, IR2, and IR3 are
satisfied. We successfully obtain an abstract representation of the provider-
confirmed message-passing mechanism.

Figure 5-5
Provider-confirmed
message-passing

 ABSTRACTIONS OF INTERACTION MECHANISMS 137

Sender

qS

Receiver

qRa

b

c

d
qS. = qR.

= fS(a.)

q

 Interaction pattern Abstract interaction

reqS.ι qS.ι Information attributes

indR.ι qR.ι
reqS.ι = fS(a.ι) qS.ι = fS(a.ι) Constraints

reqS.ι = indR.ι qS.ι = qR.ι

This abstract interaction can be represented as a remote interaction (see

Section 3.7.2) because abstract participants Sender and Receiver see the same
set of information attribute values that are available from different time
moments and at different locations. Figure 5-7 depicts this interaction as a
remote interaction.

5.3.3 Synchronous request-response

The purpose of this interaction mechanism is to establish a response
message for a given request message. A client sends a request message to a
server and the server sends a response message back to the client. After
sending a request message, the client waits for a response message before it
continues its execution.

The interaction pattern in Figure 5-8 models this interaction
mechanism. Interaction req passes a request message from the client to the
middleware [reqC.ι = fC(a.ι)]. Interaction ind passes that request message
from the middleware to the server [indM.ι = reqM.ι]. Interaction rsp passes
a response message from the server to the middleware. The server creates
the response message based on the contents of the request message and the
server’s state [rspS.ι = fS(indS.ι, c.ι)]. Interaction cnf passes that response
message from the middleware to the client [cnfM.ι = rspM.ι].

Figure 5-6
Abstract representation
of the provider-
confirmed message-
passing

Table 5-1
Correspondences
between the design
information of the
interaction pattern and
abstract interaction

Figure 5-7
Provider-confirmed
message-passing as a
remote interaction

138 CHAPTER 5 ABSTRACT REPRESENTATIONS OF INTERACTION MECHANISMS

The interaction abstraction method is applied as follows.

Step 1:
The design information that should be preserved is:
– remote participants Client and Server;
– information attributes reqC.ι and indS.ι as they represent the request

message; and
– information attributes cnfC.ι and rspS.ι as they represent the response

message.
The relation between the preserved information attributes that represent
the request message can be expressed as a single constraint [reqC.ι =
indS.ι]. The relation between the preserved information attributes that
represent the response message can be expressed as a single constraint
[cnfC.ι = rspS.ι]. The calculation to derive these constraints is shown in
Figure 5-9.

reqC.ι = reqM.ι ; local interaction req
indM.ι = reqM.ι ; interaction contribution indM
indM.ι = indS.ι ; local interaction ind
reqC.ι = indS.ι ; the relation for request message

rspS.ι = rspM.ι ; local interaction rsp
cnfM.ι = rspM.ι ; interaction contribution cnfM
cnfM.ι = cnfC.ι ; local interaction cnf
cnfC.ι = rspS.ι ; the relation for response message

The final interaction contributions in remote participants Client and

Server are cnfC and rspS, respectively. The final interactions of this interaction
pattern are hence interactions cnf and rsp. Final interaction contributions
cnfC and indS indirectly depends on context actions a and c, respectively.

Step 2:
Final interaction cnf depends on context action a via interaction req and on
context action c via interactions rsp and ind. Final interaction rsp depends on
context action a via interactions ind and req; and on context action c via

Figure 5-8
Synchronous request-
response

Figure 5-9
Calculation to derive the
relation between the
preserved information
attributes in the
synchronous request-
response

 ABSTRACTIONS OF INTERACTION MECHANISMS 139

interaction ind. Every final interaction depends on the same context actions.
Conformance requirement IR4 is satisfied.

Steps 3 and 4:
These steps result in abstract interaction q between abstract participant
Client and Server, as depicted in Figure 5-10. Abstract interaction
contributions qC and qS represent the interaction contribution structures in
remote participant Client and Server, respectively. Table 5-2 lists the
correspondences between the design information of the interaction pattern
and abstract interaction. Conformance requirement IR1, IR2, and IR3 are
satisfied. We successfully obtain an abstract representation of the
synchronous request-response mechanism.

 Interaction pattern Abstract interaction

reqC.ι qC.ιreq

cnfC.ι qC.ιcnf

indS.ι qS.ιind

Information attributes

rspS.ι qS.ιrsp

reqC.ι = fC(a.ι) qC.ιreq = fC(a.ι)
rspS.ι = fS(indS.ι, c.ι) qS.ιrsp = fS(qS.ιind, c.ι)
reqC.ι = indS.ι qC.ιreq = qS.ιind

Constraints

cnfC.ι = rspS.ι qC.ιcnf = qS.ιrsp

This interaction can be represented as a remote interaction (see Section

3.7.2) because abstract participants Sender and Receiver see the same set of
information attribute values that are available from different time moments
and at different locations. Figure 5-11 depicts this interaction as a remote
interaction. Information attributes qS.ιind and qC.ιcnf are renamed as qS.ιreq
and qC.ιrsp, respectively.

Figure 5-10
Abstract representation
of the synchronous
request-response

Table 5-2
Correspondences
between the design
information of the
interaction pattern and
abstract interaction

140 CHAPTER 5 ABSTRACT REPRESENTATIONS OF INTERACTION MECHANISMS

Client

qC

Server

qSa

b

c

d

req = fC(a.)
rsp

req

rsp = fS(req, c.)
q

5.3.4 Asynchronous request-response: callback

The purpose of this interaction mechanism is to establish a response
message for a given request message. A client sends a request message to a
server and the server sends a response message back to the client. After
sending a request message (and receiving a confirmation from the
middleware that indicates that the request message has been delivered to
the server), the client may continue its execution, but eventually it has to
wait for a response message. The Web Services callback mechanism is
defined in the WS-Callback specification [18].

The interaction pattern in Figure 5-12 models this interaction
mechanism. It is composed of two provider-confirmed message-passing
mechanisms: one is for passing a request message from the client to the
server (interactions req1, ind1, and cnf1) and the other in the opposite
direction is for passing a response message from the server to the client
(interactions req2, ind2, and cnf2).

Interaction req1 passes a request message from the client to the
middleware [req1C.ι = fC(a.ι)]. Interaction ind1 passes that request message
from the middleware to the server [ind1M.ι = req1M.ι]. Interactions cnf1
confirms the client that the request message has been delivered to the
server.

Interaction req2 passes a response message from the server to the
middleware [req2S.ι = fS(ind1S.ι, c.ι)]. Interaction ind2 passes that response
message from the middleware to the client [ind2M.ι = req2M.ι]. Interactions
cnf2 confirms the server that the response message has been delivered to the
client.

The client may do other actions while waiting for the callback, i.e.,
between interaction contributions cnf1C and ind2C. However, inserting
actions that are irrelevant to the interaction mechanism makes the design
difficult to analyse because different concerns are mixed together. Such
actions would be better done independently, possibly concurrently with the
interaction mechanism.

Figure 5-11
Synchronous request-
response as a remote
interaction

 ABSTRACTIONS OF INTERACTION MECHANISMS 141

req1

ind2

cnf1

ind1

req2

Client

req1C

cnf1C

ind2C

a

b
cnf2

Server

ind1S

req2S

cnf2S

c

d

Middleware

req1M

cnf1M

ind1M

req2M

cnf2M

ind2M

passing a
request
message

passing a
response
message

 = fM(ind1M.)

 = fC(a.) = req1M.

 = fS(ind1S. , c.) = req2M.

 = fM(ind2M.)

Instead of abstracting this interaction pattern into a single abstract
interaction in a single abstraction activity, we abstract it in two sequential
activities. First, we abstract each provider-confirmed message-passing
mechanism into an abstract interaction as in Section 5.3.2. Second, we
abstract the interaction structure that results from the first activity into an
abstract interaction.

The first activity results in the interaction structure that is depicted in
Figure 5-13. Interactions req and rsp represent the mechanisms for passing a
request and response messages, respectively. Table 5-3 lists the
correspondences between the design information of the interaction pattern
and the abstract interactions.

Figure 5-12
Asynchronous request-
response based on
callback

Figure 5-13
Callback using remote
interactions

 Interaction pattern Abstract interactions

req1C.ι reqC.ι
ind1S.ι reqS.ι
req2S.ι rspS.ι

Information attributes

ind2C.ι rspC.ι
req1C.ι = fC(a.ι) reqC.ι = fC(a.ι)
req1C.ι = ind1S.ι reqC.ι = reqS.ι
req2S.ι = fS(ind1S.ι, c.ι) rspS.ι = fS(reqS.ι, c.ι)

Constraints

req2S.ι = ind2C.ι rspS.ι = rspC.ι

Table 5-3
Correspondences
between the design
information of the
interaction pattern and
abstract interactions

142 CHAPTER 5 ABSTRACT REPRESENTATIONS OF INTERACTION MECHANISMS

The second activity abstracts the interaction structure in Figure 5-13

into an abstract interaction q.

Step 1:
The design information that should be preserved is:
– participants Client and Server;
– information attributes reqC.ι and reqS.ι as they represent the request

message; and
– information attributes rspC.ι and rspS.ι as they represent the response

message.
The relation between the preserved information attributes that represent
the request message is distribution constraint [reqC.ι = reqS.ι]. The
relation between the preserved information attributes that represent the
response message is distribution constraint [rspC.ι = rspS.ι]. These
constraints are implicit in remote interactions req and rsp, respectively.

The final interaction contributions in participants Client and Server are
rspC and rspS, respectively. The final interaction of this interaction pattern is
hence interaction rsp. Final interaction contributions rspC and rspS indirectly
depends on context actions a and c, respectively.

Step 2:
Final interaction rsp depends on context actions a and c via interaction req
Conformance requirement IR4 is satisfied.

Steps 3 and 4:
These steps result in abstract interaction q between abstract participant
Client and Server, as depicted in Figure 5-14. Abstract interaction
contributions qC and qS represent the interaction contribution structures in
participant Client and Server, respectively. Table 5-4 lists the
correspondences between the design information of the interaction
structure and abstract interaction. Conformance requirement IR1, IR2, and
IR3 are satisfied. We successfully obtain an abstract representation of the
asynchronous request-response mechanism based on callback.

Client

qC

Server

qSa

b

c

d
qC. req = qS. req

qC. rsp = qS. rsp

q

req = fC(a.)
rsp

req

rsp = fS(req, c.)

Figure 5-14
Abstract representation
of the asynchronous
request-response based
on callback

 ABSTRACTIONS OF INTERACTION MECHANISMS 143

This abstract interaction can be represented as a remote interaction (see

Section 3.7.2), as depicted in Figure 5-11.
Alternatively, this interaction mechanism can be modelled as the

interaction pattern in Figure 5-15. It is composed of two unconfirmed
message-passing mechanisms: one is for passing a request message from the
client to the server (interactions req1 and ind1) and the other in the opposite
direction is for passing a response message from the server to the client
(interactions req2 and ind2). This interaction pattern can be abstracted into
an abstract interaction in a similar way to the abstraction in Section 5.3.3.
It results in an abstract interaction that is the same as the abstract
interaction in Figure 5-14.

5.3.5 Asynchronous request-response: remote-polling

The purpose of this interaction mechanism is to establish a response
message for a given request message. A client sends a request message to a
server and then polls the server for a response message. After receiving a
request message, the server waits for the client to poll a response message.
The Web Services remote-polling mechanism is defined in the WS-Polling
specification [140].

The interaction pattern in Figure 5-16 models this interaction
mechanism. It is composed of a provider-confirmed message-passing
mechanism for passing a request message from the client to the server

Table 5-4
Correspondences
between the design
information of the
interaction structure and
abstract interaction

 Interaction structure Abstract interaction

reqC.ι qC.ιreq

reqS.ι qS.ιreq

rspS.ι qS.ιrsp

Information attributes

rspC.ι qC.ιrsp

reqC.ι = fC(a.ι) qC.ιreq = fC(a.ι)
reqC.ι = reqS.ι qC.ιreq = qS.ιreq

rspS.ι = fS(reqS.ι, c.ι) qS.ιrsp = fS(qS.ιreq, c.ι)

Constraints

rspS.ι = rspC.ι qS.ιrsp = rspC.ι

Figure 5-15
Callback using
unconfirmed message-
passings

144 CHAPTER 5 ABSTRACT REPRESENTATIONS OF INTERACTION MECHANISMS

(interactions req1, ind1, and cnf1) and a synchronous request-response
mechanism that is initiated by the client for polling a response message
(interactions req2, ind2, rsp2, and cnf2).

Interaction req1 passes a request message from the client to the
middleware [req1C.ι = fC(a.ι)]. Interaction ind1 passes that request message
from the middleware to the server [ind1M.ι = req1M.ι]. Interactions cnf1
confirms the client that the request message has been delivered to the
server.

Interaction req2 passes a polling message from the client to the
middleware. The client creates this polling message based on the request
message sent earlier [req2C.ι = pS(req1C.ι)]. Interaction ind2 passes this
polling message from the middleware to the server [ind1M.ι = req1M.ι]. It is
used to poll a response message [rsp2S.ι = pS(ind2S.ι) = fS(ind1S.ι, c.ι)].
Interaction cnf2 passes that response message from the middleware to the
client [cnf2M.ι = rsp2M.ι].

The client may do other actions before polling the response message,
i.e., between interaction contributions cnf1C and req2C. As motivated in
Section 5.3.4, such actions would be better done independently, possibly
concurrently with the interaction mechanism.

We abstract the interaction pattern in two sequential activities as in
Section 5.3.4. First, we abstract each underlying interaction mechanism
into an abstract interaction. Second, we abstract the interaction structure
that results from the first activity into an abstract interaction.

The first activity results in the interaction structure that is depicted in
Figure 5-13. Interaction req represents the mechanism for passing a request
message. Interaction rsp represents the mechanism for polling a response
message. It abstracts from the polling message because this message is not
essential according to the purpose of the interaction mechanism. The
second activity results in the same model as depicted in Figure 5-14.

Figure 5-16
Asynchronous request-
response based on
remote polling

 ABSTRACTIONS OF INTERACTION MECHANISMS 145

Alternatively, an unconfirmed message-passing mechanism can be used
for passing a request message. In this case, the interaction pattern should be
done directly, not in two sequential activities. This is because an
unconfirmed message-passing mechanism cannot be abstracted into an
abstract interaction. The abstraction results in an abstract interaction as
depicted in Figure 5-14 .

5.3.6 Asynchronous request-response: local-polling

The purpose of this interaction mechanism is to establish a response
message for a given request message. A client sends a request message to a
server and then polls the middleware for a response message. After
receiving a request message, the server gives a response message to the
middleware. The middleware waits for the client to poll that response
message. Web Services do not have any specification for a local-polling
mechanism.

The interaction pattern in Figure 5-17 models this interaction
mechanism. The client sends a request message to the server using a
provider-confirmed message-passing mechanism (interactions req1, ind1, and
cnf1). Interaction req1 passes a request message from the client to the
middleware [req1C.ι = fC(a.ι)]. Interaction ind1 passes that request message
from the middleware to the server [ind1M.ι = req1M.ι]. Interactions cnf1
confirms the client that the request message has been delivered to the
server. When a response message is available, the server passes it to the
middleware using interaction rsp2 [rsp2S.ι = fS(ind1S.ι, c.ι)].

Interaction req2 passes a polling message from the client to the
middleware [req2C.ι = pS(req1C.ι)]. Interaction cnf2 passes a response
message that is associated to that polling message from the middleware to
the client [cnf2M.ι = pM(req2M.ι) = rsp2M.ι].

The abstract representation of the provider-confirmed message-passing
mechanism that is obtained in Section 5.3.2 cannot be reused here because
the other part of this local-polling mechanism, i.e., for polling a response
message, cannot be abstracted separately into an abstract interaction. This
interaction pattern has to be abstracted into an interaction mechanism in a
single abstraction activity.

The client may do other actions before polling the response message,
i.e., between interaction contributions cnf1C and req2C. As motivated in
Section 5.3.4, such actions would be better done independently, possibly
concurrently with the interaction mechanism.

146 CHAPTER 5 ABSTRACT REPRESENTATIONS OF INTERACTION MECHANISMS

The interaction abstraction method is applied as follows.

Step 1:
The design information that should be preserved is:
– remote participants Client and Server;
– information attributes req1C.ι and ind1S.ι as they represent the request

message; and
– information attributes cnf2C.ι and rsp2S.ι as they represent the response

message.
The relation between the preserved information attributes that represent
the request message can be expressed as a single constraint [req1C.ι =
ind1S.ι]. The relation between the preserved information attributes that
represent the response message can be expressed as a single constraint
[cnf2C.ι = rsp2S.ι]. The calculation to derive these constraints is shown in
Figure 5-18.

req1C.ι = req1M.ι ; local interaction req1
ind1M.ι = req1M.ι ; interaction contribution ind1M
ind1M.ι = ind1S.ι ; local interaction ind1
req1C.ι = ind1S.ι ; the relation for request message

rsp2S.ι = rsp2M.ι ; local interaction rsp2
cnf2M.ι = rsp2M.ι ; interaction contribution cnf2M
cnf2M.ι = cnf2C.ι ; local interaction cnf2
cnf2C.ι = rsp2S.ι ; the relation for response message

The final interaction contributions in remote participants Client and

Server are cnf2C and rsp2S, respectively. The final interactions of this
interaction pattern are hence interactions cnf2 and rsp2. Final interaction
contributions cnf2C and ind2S indirectly depends on context actions a and c,
respectively.

Figure 5-17
Asynchronous request-
response based on
local-polling

Figure 5-18
Calculation to derive the
relation between the
preserved information
attributes in the
asynchronous request-
response based on local
polling

 ABSTRACTIONS OF INTERACTION MECHANISMS 147

Step 2:
Final interaction cnf2 depends on context action a via interactions req2, cnf1,
and req1; and on context action c via interactions rsp2 and ind1. Final
interaction rsp2 depends on context action a via interaction ind1 and req1;
and on context action c via interaction ind1. Every final interaction depends
on the same context actions. Conformance requirement IR4 is satisfied.

Steps 3 and 4:
These steps result in abstract interaction q between abstract participant
Client and Server, as depicted in Figure 5-19. Abstract interaction
contributions qC and qS represent the interaction contribution structures in
remote participants Client and Server, respectively. Table 5-5 lists the
correspondences between the design information of the interaction pattern
and abstract interaction. Conformance requirement IR1, IR2, and IR3 are
satisfied. We successfully obtain an abstract representation of the
asynchronous request-response mechanism based on local polling.

Client

qC

Server

qSa

b

c

d
qC. req = qS. ind

qC. cnf = qS. rsp

req = fC(a.)
cnf

ind

rsp = fS(ind, c.)
q

This abstract interaction can be represented as a remote interaction, as

depicted in Figure 5-11. Information attributes qS.ιind and qC.ιcnf are
renamed as qS.ιreq and qC.ιrsp, respectively.

5.3.7 Multicast message-passing

The purpose of this interaction mechanism is to pass copies of a message
from a sender to multiple receivers. In CORBA and Web Services, this
interaction mechanism is implemented using a publish/subscribe

Figure 5-19
Abstract representation
of the asynchronous
request-response based
on local-polling

Table 5-5
Correspondences
between the design
information of the
interaction pattern and
abstract interaction

 Interaction pattern Abstract interaction

req1C.ι qC.ιreq

ind1S.ι qS.ιind

rsp2S.ι qS.ιrsp

Information attributes

cnf2C.ι qC.ιcnf

req1C.ι = fC(a.ι) qC.ιreq = fC(a.ι)
req1C.ι = ind1S.ι qC.ιreq = qS.ιind

rsp2S.ι = fS(ind1S.ι, c.ι) qS.ιrsp = fS(qS.ιind, c.ι)

Constraints

cnf2C.ι = rsp2S.ι qC.ιcnf = qS.ιrsp

148 CHAPTER 5 ABSTRACT REPRESENTATIONS OF INTERACTION MECHANISMS

mechanism with a message broker playing the role of an intermediary. A
publisher passes a message to the message broker and then the message
broker passes copies of that message to multiple subscribers. A subscriber
receives a copy of that message. The Web Services publish/subscribe
mechanism is defined in the WS-Notification specification [84, 85].

A message is passed from a publisher to the message broker or from the
message broker to a subscriber using either a ‘push’ or ‘pull’ strategy. In a
‘push’ strategy, a publisher pushes a message to the message broker. In a
‘pull’ strategy, the message broker pulls a message from a publisher.
Similarly, the message broker can push a copy of a message to a subscriber;
or a subscriber can pull a copy of a message from the message broker.

The interaction pattern in Figure 5-20 models this interaction
mechanism. A publisher sends copies of a message to two subscribers.
Interaction req passes a message from the publisher to the message broker.
Interaction ind1 and ind2 passes copies of that message from the message
broker to the subscribers.

This interaction pattern is already modelled at a higher abstraction level.
It abstracts from the actual interaction mechanisms used in remote
interactions req, ind1, and ind2. Each interaction can be implemented to
support either a ‘push’ or ‘pull’ strategy. For example, if interaction req has
to support a ‘push’ strategy, it can be implemented using the provider-
confirmed message-passing mechanism, in which the publisher acts as a
sender and the message broker acts as a receiver. If it has to support a ‘pull’
strategy, it can be implemented using the synchronous request-response
mechanism, in which the message broker acts as a client and the publisher
acts as a server.

req

ind1

Publisher

a

b

Subscriber1

ind1S c

d

Broker

ind1B

ind2

Subscriber2

ind2S c

d

ind2B

 = fS(a.)

reqP reqB

 = reqB.

 = reqB.

Like the unconfirmed message-passing mechanism, the multicast
message-passing mechanism does not provide synchronisation between
remote participants. Conformance requirement IR4 is therefore not

Figure 5-20
Multicast message-
passing

 ABSTRACTIONS OF INTERACTION MECHANISMS 149

satisfied. This interaction mechanism cannot be abstracted into a single
abstract interaction.

To facilitate interaction design, we introduce a shorthand notation for
multicast message-passing communication as depicted in Figure 5-21. This
shorthand notation does not abstract from any design information of the
multicast message-passing interaction mechanism.

5.3.8 Summary

Table 5-6 summarises the results of the abstractions in the previous
subsections. ‘Yes’ means that an abstract interaction can be obtained to
represent an interaction mechanism. ‘No (shorthand)’ means that an
abstract interaction cannot be obtained and a shorthand notation is
introduced to facilite interaction design.

Section Interaction mechanism Abstraction

5.3.1 Unconfirmed message-passing No (shorthand)
5.3.2 Provider confirmed message-passing Yes
5.3.3 Synchronous request-response Yes
5.3.4 Asynchronous request-response: callback Yes
5.3.5 Asynchronous request-response: remote polling Yes
5.3.6 Asynchronous request-response: local polling Yes
5.3.7 Multicast message-passing No (shorthand)

The fact that our interaction abstraction method cannot obtain abstract

representations of every interaction mechanisms does not invalidate the
abstraction method. Instead, it shows that the abstraction method can
assess the possibility of a conformance relation between an interaction
mechanism and an abstract interaction. When a conformance relation

Figure 5-21
Shorthand notation for
multicast message-
passing communication

Table 5-6
Summary of the abstract
representations of
interaction mechanisms

150 CHAPTER 5 ABSTRACT REPRESENTATIONS OF INTERACTION MECHANISMS

cannot be established, the abstraction method prevents an interaction
mechanism from being represented as an abstract interaction.

It also shows that our interaction concept cannot represent every
available interaction mechanism. This limitation is a consequence of
choosing interaction synchronisation as a property of the interaction
concept. The limitation makes our objective of obtaining abstract
representations of common interaction mechanisms not fully achieved, i.e.,
some interaction mechanisms have to be expressed using shorthand
notations. A shorthand notation provides a convenient graphical expression
for an interaction mechanism, but it still requires a designer to think in
terms of the detailed behaviour of the interaction mechanism.

5.4 Example of use

In this section, we illustrate the use of the abstract representations of
interaction mechanisms that are obtained in Section 5.3 in an interaction
design process. Figure 5-22 depicts an interaction design process of an
interaction for applying for a credit card. Figure 5-22(i) depicts this credit
card application as a single abstract interaction ccApply. The customer wants
a credit limit that is higher than EUR 1000, while the bank only allows the
maximum of EUR 5000. In Figure 5-22(ii), we refine interaction ccApply
into a concrete interaction structure that consists of interactions retrieve and
apply to model the retrieval of a credit card application form and the
application for a credit card using that form, respectively.

We decide that interaction retrieve should be implemented as a
synchronous request-response mechanism, in which the customer acts as
the client and the bank acts as the server. The reason is that the bank can
respond the customer’s request by sending a requested application form
back to the customer immediately. We decide that interaction apply should
be implemented as an asynchronous request-response mechanism based on
callback, in which the customer acts as the client and the bank acts the
server. The reason is that the bank needs a couple of days for manual
authorisation before sending a response to the customer.

To include these decisions into an interaction design, we annotate the
design with information that indicates those decisions. In Figure 5-22(iii),
annotations ‘(sync)’ and ‘(async:cb)’ indicate that the interactions must be
implemented as a synchronous request-response and an asynchronous
request-response based on callback, respectively. An interaction
contribution has an indication of the role played by the participant.
Annotation ‘(req)’ or ‘(rsp)’ that precedes an information attribute
indicates that the annotated information attribute is the request or response
message, respectively. Platform-specific information, e.g., of CORBA or

 EXAMPLE OF USE 151

Web Services, can also be added to the interaction design (not shown in the
figure).

This example shows that, when suitable and correct abstract
representations of interaction mechanisms are available, a designer has only
to develop an interaction design at a high abstraction level. Such abstract
representations give the designer confidence that the abstract
representations can be implemented using available standardised interaction
mechanisms, without having to include explicitly the behaviour of
interaction mechanisms in the interaction design. The abstract
representations allow the designer to focus on the application or business
logic of the interaction between the remote participants at his own
abstraction level.

Figure 5-22
Design process of the
interactions for a credit
card application

152 CHAPTER 5 ABSTRACT REPRESENTATIONS OF INTERACTION MECHANISMS

5.5 Related work

At a lower abstraction level, certain interaction structures may appear
frequently [12]. Our abstraction approach can be used to obtain abstract
representations of, e.g., the interaction patterns that are described in [16,
54, 70]. When such abstract representations are available, a designer does
not have to define the same interaction structure multiple times in an
interaction design. Instead, the designer can define them as abstract
interactions (possibly with some indications about the targeted interaction
patterns).

In [34], different interaction mechanisms are represented by different
interaction design concepts. In contrast, our work represents abstract
representations of different interaction mechanisms using the same
interaction concept, i.e., the ISDL enhanced interaction concept defined in
Chapter 3. This gives us two benefits as follows.

First, a composition of abstract representations can be further
abstracted into an abstract interaction using the same abstraction method.
We have shown this benefit when obtaining the abstract representations of
the callback and remote-polling mechanisms in Section 5.3.4 and 5.3.5,
respectively.

Second, at a higher abstraction level, a designer does not have to decide
yet which interaction mechanisms should implement an abstract
interaction. At a lower abstraction level, the designer has alternatives to
implement an abstract interaction. We have shown this benefit in the
example in Section 5.4.

[115, 116] uses the concept of connector to represent an abstract
representation of an interaction mechanism. A connector is defined
straightforwardly without examining the behaviour of an interaction
mechanism. No conformance requirement or abstraction method is
defined. This way of representation has no evidence on which to claim the
correctness of a connector with respect to the behaviour of an interaction
mechanism that it represents. Our abstraction approach defines
conformance requirements between an interaction structure and its abstract
representation. It uses a systematic abstraction method to check whether
these conformance requirements are satisfied. In this way, one can have
evidence that an abstract representation is correct.

A connector represents a specific interaction protocol, e.g., procedure
calls, UNIX pipes, SQL links, or buffers [52, 78, 114], as a single concept.
It is therefore suitable for representing an interaction mechanism.
However, it forces a designer to think at an implementation level or about a
specific implementation platform. Our abstract representations are
independent from any interaction mechanism or implementation platform.

 CONCLUDING REMARKS 153

5.6 Concluding remarks

In this chapter, we have applied our abstraction method to obtain abstract
representations of interaction mechanisms that are provided by
communication middleware, i.e., CORBA and Web Services. These abstract
representations allow a designer to specify interactions in a service
composition, without being forced to consider the details of possible
alternative interaction mechanisms at the early phase of a design process.

We have developed an approach to obtain an abstract representation of
comparable interaction mechanisms provided by different communication
middleware. The abstract representation is defined using the ISDL
enhanced interaction concept. However, abstract representations of some
interaction mechanisms, i.e., the unconfirmed message-passing and
multicast message-passing mechanisms, cannot be obtained. To facilitate
interaction design, we have introduced shorthand notations for those
interaction mechanisms.

Since the behaviour of an interaction mechanism is pre-defined by
communication middleware, the mapping between the interaction
mechanism and its abstract representation can be defined. This mapping
can be used to develop a transformation for refining an abstract interaction
into an interaction structure that represents the interaction mechanism, by
using (semi-)automatic transformation techniques. When such a
transformation is available, a designer has only to indicate how the
interaction mechanism should implement the abstract interaction, as
illustrated by the example in Section 5.4. The transformation is then used
to produce a correct implementation, i.e., a concrete interaction design or
an executable implementation, based on this indication.

This chapter has shown that our interaction concept can be used to
model precisely the behaviour of interaction mechanisms as a composition
of interactions. The behaviour models of some interaction mechanisms can
be abstracted into abstract interactions that preserve the essential properties
of the interaction mechanisms. The interaction concept satisfies the
requirement for modelling concrete interactions, as defined in Section 2.6.

Chapter 6

6. Transformation to executable
implementations

The Model Driven Architecture (MDA) approach [90, 91], especially
regarding automatic transformations, has been widely used and investigated
to facilitate and speed up the implementation process of service
composition [14, 22, 23, 35, 48, 61, 63, 64, 74]. For the same reason, we
develop an automatic transformation tool to transform a service
composition model to an executable implementation in BPEL (Business
Process Execution Language, version 1.1 [20]). We call our transformation
tool the ISDL2BPEL transformation tool.

This chapter explains the development of the ISDL2BPEL
transformation tool. This chapter is organised as follows: Section 6.1
presents specification languages for service compositions that we use in the
ISDL2BPEL transformation tool. Section 6.2 introduces our approach in
the development of the ISDL2BPEL transformation tool. In this section, we
argue that a service composition model must comply with certain modelling
restrictions. Also, we present the decomposition of the transformation tool
into three sub-transformations, namely pattern recognition, constraint
transformation, and model realisation. Section 6.3 presents the modelling
restrictions imposed on a service composition model that will be
transformed using the transformation tool. Section 6.4 presents the pattern
recognition. Section 6.5 presents the constraint transformation. Section 6.6
presents the model realisation. Section 6.7 discuses related work. Finally,
Section 6.8 presents some concluding remarks.

6.1 Service compositions in Web Services

Web Services [133] have become a preferred implementation platform on
which enterprises execute their services [42, 77]. This has motivated us to

156 CHAPTER 6 TRANSFORMATION TO EXECUTABLE IMPLEMENTATIONS

use Web Services as the target implementation platform of our
transformation tool.

A service description describes the offered service of a service provider
and/or the requested service of a service user. It contains, among others, a
list of operations for interaction with a service provider or user. In a Web
Service platform, a service description is specified in WSDL (Web Service
Description Language [138, 139]).

As mentioned in Chapter 1, a service composition can be a
choreography or an orchestration. In a Web Service platform, a
choreography can be specified in WS-CDL (Web Services Choreography
Description Language [135]), WSCI (Web Services Choreography Interface
[136]), or WSCL (Web Services Conversation Language [137]). An
orchestration can be specified in BPEL (Business Process Execution
Language [20, 86]), WSFL (Web Services Flow Language [69]), or XLANG
[124].

Nowadays, BPEL has become the de facto language for specifying Web
Services orchestrations. Execution engines are available, e.g., [2, 97], to
execute orchestrations that are specified in BPEL. Hence, an orchestration
specified in BPEL is an executable implementation. The ISDL2BPEL
transformation tool transforms an orchestration that is specified in ISDL to
an executable implementation in BPEL.

6.1.1 WSDL

WSDL is a service description language that is based on XML [132]. A
service description that is specified in WSDL is called a WSDL description. A
WSDL description consists of the following definitions (we assume WSDL
version 1.1 as it is used in the ISDL2BPEL transformation tool):
– data types

Data types and elements are to be used in the message types definition
below. Data types and elements are defined using XML Schema [142].

– message types
A message type defines the type of messages that can be exchanged. A
message consists of one or more logical parts; each of which has a type
that can be either a data type or element that is defined in the data types
definition above or an XML Schema type.

– port types
A port type is a set of related operations. An operation includes a set of
input, output and fault messages.

– bindings
A binding defines communication protocols and message encoding to
support the invocation of operations and the exchange of the associated
messages. A port type may have multiple bindings.

 SERVICE COMPOSITIONS IN WEB SERVICES 157

– ports
A port defines an endpoint for a binding. An endpoint specifies a
network address at which a service that provides the port type is
available.

– services
A service groups a number of related ports.

The data types definition, message types definition, and port types

definition make up the abstract part of a WSDL description. The bindings
definition, ports definition, and services definition make up the concrete
part [7]. The abstract part is independent of any protocol or message
encoding. It is also independent of the location at which a service is
available. Hence, it is reusable for different protocols, message encoding,
and locations. The concrete part defines a specific protocol, message
encoding, and location of a service.

WSDL defines four types of operations that an endpoint can support:
– One-way operation. The endpoint receives a message.
– Request-response operation. The endpoint receives a message and sends a

correlated message.
– Solicit-response operation. The endpoint sends a message and receives a

correlated message.
– Notification operation. The endpoint sends a message.

6.1.2 BPEL

BPEL is a language that is based on XML for specifying the coordinator of
an orchestration on a Web Services platform. A coordinator that is specified
in BPEL is called a BPEL process. A BPEL process is exposed to its users as a
service provider that is described in WSDL.

The BPEL concepts that are used in the ISDL2BPEL transformation
tool are as follows. (We assume BPEL version 1.1 as it is used in the
ISDL2BPEL transformation tool)

Partner links
Service providers and users with which a BPEL process interacts are called
partners. A logical connection between a BPEL process and partner is
defined as a partner link. In a partner link, a BPEL process and partner play
specific roles.

A partner link is an instance of a partner link type. A partner link type
defines roles that have to be played by a BPEL process and partner. A role is
associated with a WSDL port type. Only operations that are defined in that
port type can be invoked within the partner link. Partner link types are

158 CHAPTER 6 TRANSFORMATION TO EXECUTABLE IMPLEMENTATIONS

defined as WSDL extensions, i.e., a partner link type is specified in a
WSDL description to support a BPEL process.

Activities
BPEL distinguishes two kinds of activities: basic activities and structured
activities. A basic activity represents certain functionality. A structured
activity defines the execution order of other activities. The activities are as
follows. (We only list BPEL activities that serve as target activities of the
ISDL2BPEL transformation tool.)

The basic activities are:
– invoke

This activity invokes an operation that is provided by a partner. If the
invoked operation is a one-way operation, the execution of the BPEL
process that specifies this activitiy continues immediately. If the invoked
operation is a request-response operation, this activity then waits for
and receives a response message. Upon the reception of the response
message, the execution of the BPEL process continues.

– receive
This activity waits for and receives a message from a partner. Upon the
reception of a message, the execution of the BPEL process that specifies
this activitiy continues.

– reply
This activity sends a message as a response to a message that is received
by a receive activity. It must be used together with a receive activity to
provide a request-response operation.

– assign
This activity assigns or updates variables with new values. A variable is
associated with either an element defined in an XML schema, an XML
Schema simple type, or a message type defined in a WSDL description.

The structured activities are:

– sequence
This activity orders the execution of one or more activities sequentially.

– flow
This activity allows concurrent execution of two or more activities.

– switch
This activity allows alternative behaviours. It specifies a number of
conditional activities and one optional default activity. The default
activity is executed when none of the conditional activities can be
executed, i.e., their conditions cannot be satisfied.

– while
This activity executes another activity repeatedly as long as a repetition
condition is satisfied.

 SERVICE COMPOSITIONS IN WEB SERVICES 159

– pick
This activity waits for events to occur. An event can be the arrival of a
message or the expiration of a timer. When an event occurs, an activity
that is associated to that event is executed.

Compensation and fault handlers
Transaction processing in a BPEL process is defined using compensation. A
compensation handler defines the activities for compensating the effect of
another activity in a transaction. It can be executed only if the activity that it
has to compensate completes normally.

A compensation handler can be invoked only within a fault handler or
another compensation handler. A fault handler defines the activities that
have to be executed when one or more faults occur during execution. It
specifies the types of fault signals that can be handled.

Two activities to deal with compensation and faults are:
– throw

This activity throws a fault signal that indicates that a fault occurs. This
fault is to be handled by a fault handler. If a fault cannot be handled by a
fault handler, it causes the execution of a BPEL process to terminate.

– compensate
This activity invokes a compensation handler.

Remarks
As a specification language for orchestrations, BPEL provides sufficient
support to implement activities for interacting with service providers and
users, i.e., receive, reply, and invoke. On the other hand, BPEL provides
limited support for data manipulation in the assign activity. By default,
BPEL uses XPath 1.0 [141] for data manipulation. XPath is a query
language for XML documents, which supports only simple arithmetic,
boolean, and string manipulation. BPEL and XPath are not sufficient for
complex data manipulation.

Several options have been proposed to deal with the limitation of BPEL
on data manipulation, such as in [1, 19, 25, 63, 64, 87, 97]. In Section 6.5,
we discuss those options and select one of them to be used in the
ISDL2BPEL transformation tool.

160 CHAPTER 6 TRANSFORMATION TO EXECUTABLE IMPLEMENTATIONS

6.2 Approach

In this chapter, we use the term ‘model’ to denote a design, in order to
match to the term that is used by the MDA approach.

6.2.1 General approach

A service composition model, i.e., a model that specifies a service
composition, is eventually transformed to an executable implementation on
a target implementation platform. An implementation platform typically
imposes certain requirements on the implementation that will be executed
on it. These requirements determine the model transformation that should
be done to transform a service composition model to an executable
implementation. Figure 6-1 illustrates a transformation of a service
composition model to an executable implementation that satisfies the
requirements imposed by a target platform.

The definition of the solution for some implementation requirements
cannot be automated because it involves a creative process for making
design choices. For example, Web Services and BPEL support only
message-passing and synchronous request-response interaction
mechanisms. Any abstract interaction in a service composition model
should be refined into these interaction mechanisms. This refinement
involves a designer’s creative process that cannot be automated.

The definition of the solution for other implementation requirements
can be automated, given sufficient platform-specific information. For
example, an interaction that is annotated with information about the
operation name that should be invoked, the port type in which that
operation is defined, and the partner link that should be used for that
operation invocation can be transformed to a complete BPEL invoke
activity.

For those reasons, our approach to transforming a service composition
model in ISDL to an executable implementation in BPEL consists of two
smaller transformations, as depicted in Figure 6-2:

Figure 6-1
Transformation of a
service composition
model to an executable
implementation

 APPROACH 161

– manual transformation T1, which transforms a service composition model
in ISDL to another service composition in ISDL that satisfies the
implementation requirements imposed by BPEL of which the definition
of their solution cannot be automated. This transformation includes
annotation on the resulting model with WSDL/BPEL-specific
information. The model resulting from this transformation is a
WSDL/BPEL-specific model at an implementation level.

– automatic transformation T2, which transforms a service composition
model resulted from transformation T1 to an executable
implementation in BPEL. The ISDL2BPEL transformation tool
automates this transformation.

Transformation T1 can be considered as a transformation that prepares
a service composition model that can be transformed by transformation T2.
It produces a service composition model that complies to certain modelling
restrictions. These restrictions include the restrictions on the design
concepts that can be used, on the behaviour structures that can be formed,
and on the way to specify constraints. Later in Section 6.3, we present these
modelling restrictions in more detail.

BPEL is a language whose purpose is to specify the coordinator of an
orchestration. Thus, the ISDL2BPEL transformation tool transforms only
the coordinator model, i.e., the model of the coordinator of an
orchestration, and not a complete service composition model.

6.2.2 Decomposition of the ISDL2BPEL transformation tool

This section gives an overview of the ISDL2BPEL transformation tool.
In order to deal with different tasks in transforming a coordinator

model in ISDL to a BPEL process and WSDL extensions to support that
BPEL process, we decompose the ISDL2BPEL transformation tool to three
sub-transformation tools: pattern recognition, constraint transformation, and

Figure 6-2
Manual and automated
transformations

162 CHAPTER 6 TRANSFORMATION TO EXECUTABLE IMPLEMENTATIONS

model realisation, as depicted in Figure 6-3. These sub-transformations are
decoupled from each other by using intermediate models between sub-
transformations. An intermediate model contains all the information that is
necessary to produce a BPEL process. An intermediate model is also useful
to examine whether a transformation produces a correct output model,
given a certain input model. The language for specifying intermediate
models is presented in Section 6.4.2.

Pattern recognition
The relations between activities in a coordinator model form a behaviour
structure. This structure determines, amongst others, the execution order of
the activities. In general, a behaviour structure is composed of generic
structures representing well-known and frequently-used relations, such as
sequence and concurrency. We use the term behavioural patterns to denote
these generic structures. A pattern defines the relations between activities,
without determining what activities are related. Patterns are typically nested
to form a (more complex) behaviour structure.

In the transformation of a coordinator model to a BPEL process,
behavioural patterns that are used in that coordinator model have to be
recognised. In the ISDL2BPEL transformation tool, the recognised patterns
are documented in an intermediate model. The task of recognising and
documenting behavioural patterns that are used in a coordinator model is
called the pattern recognition. It is presented in more detail in Section 6.4.

Constraint transformation
Constraints that are specified in a coordinator model can be contribution
constraints (see Section 3.5.2), causality constraints (see Section 3.3.3), or
repetition constraints (see Section 3.3.5). These constraints have to be
transformed properly. The task of transforming constraints in a coordinator
model is called the constraint transformation. It transforms an intermediate
model that is produced by the pattern recognition to another intermediate
model.

Figure 6-3
Decomposition of the
ISDL2BPEL
transformation tool

 MODELLING RESTRICTIONS 163

As mentioned in Section 6.1.2, BPEL supports limited data
manipulation. We evaluate several options to overcome this limitation and
select one to be used in the ISDL2BPEL transformation tool. The
constraint transformation is to accomodate the selected option. It is
presented in more detail in Section 6.5.

Model realisation
Finally, the intermediate model that is produced by the constraint
transformation is realised as a BPEL process. This task is called the model
realisation. It is presented in more detail in Section 6.6.

We developed the ISDL2BPEL transformation tool in Java by using the
EMF (Ecplise Modelling Framework [40]). Chapter 8 uses the ISDL2BPEL
transformation tool in a case study.

6.3 Modelling restrictions

This section presents the modelling restrictions, as mentioned in Section
6.2.1, that should be comply with by the coordinator model in ISDL that
will be transformed to a BPEL process using the ISDL2BPEL
transformation tool. The restrictions are derived from the implementation
requirements imposed by Web Services and BPEL.

6.3.1 Activities

The modelling restrictions on the activities of a coordinator are as follows.

Restriction 1: Each activity of a coordinator must be an activity that represents the
contribution of that coordinator to the interaction with a service provide or user.

A coordinator coordinates interactions between service users and
providers in an orchestration. Activities in a coordinator are mainly
activities for interacting with service providers and users. BPEL supports the
implementation of a coordinator by providing basic activities for
interaction, i.e., invoke, receive, and reply. BPEL assumes that any activity
can be carried out as an interaction with other service provider or user.

In ISDL, an interaction contribution represents the contribution of an
entity to the interaction with other entitie(s). Activities in a coordinator are
hence interaction contributions only.

Restriction 2: Interaction contributions of a coordinator must represent operation
calls and/or operation executions.

164 CHAPTER 6 TRANSFORMATION TO EXECUTABLE IMPLEMENTATIONS

The basic interaction in Web Services is an operation invocation that

involves only two participants. One participant plays the role of a service
provider. The other participant plays the role of a service user. The service
user sends a request to call an operation that is provided by the service
provider. The service provider executes that operation and returns the
operation result as a response to the service user, if required. In an
interaction, a coordinator plays either a service user or provider role.

We model an operation call as a pair of interaction contributions as
depicted in Figure 6-4. Interaction contribution invoke sends a request and
interaction contribution return receives the response. Similarly, we model an
operation execution as a pair of interaction contributions. Interaction
contribution accept receives a request and interaction contribution reply
returns a response. A request sent by a service user via interaction
contribution invoke is received by a service provider via interaction
contribution accept. A response returned by the service provider via
interaction contribution reply is received by the service user via interaction
contribution return. Activities performed by the service provider during an
operation execution can be inserted between interaction contributions
accept and reply. In the service user, no activity may be inserted between
interaction contributions invoke and return, because they model a
synchronous operation call.

Restriction 3: Operation calls and operation executions of a coordinator must be
specified using their respective shorthands.

Since all interactions must represent operation invocations, we define

shorthands to specify operations calls and executions for convenience.
Figure 6-5 depicts an interaction between two participants P1 and P2 using
the shorthands for operation calls and executions. An operation call is
graphically expressed as a segmented ellipse with a white rectangle attached
to it. Interaction contributions invoke and return are indicated by arrows
pointing toward and away from the white rectangle, respectively. An
operation execution is graphically expressed as a segmented ellipse with a
black rectangle attached to it. Interaction contributions accept and reply are
indicated by arrows pointing away from and toward the white rectangle,

Figure 6-4
Operation call and
execution

 MODELLING RESTRICTIONS 165

respectively. In the figure, participant P1 has an operation call and
participant P2 has an operation execution. Hence, in this operation
invocation, participants P1 and P2 play the roles of a service user and
provider, respectively.

Interaction contribution invoke of an operation call is called the invoke part
of an operation call. Similarly, the other interaction contributions are called
the return part of an operation call, the accept part of an operation execution and the
reply part of an operation execution.

Attributes are specified in a text box attached to the segmented ellipse.
In the figure, the invoke part of operation call op1 has an information
attribute of type Request and the return part of this operation call has an
information attribute of type Response. The accept part of operation
execution op2 has an information of type Request and the reply part of this
operation execution has an information of type Response.

A reference to an interaction contribution that is part of an operation
can be made by appending the symbol ‘$’ to the operation name followed
by the name of the part, i.e., invoke, accept, reply or return. For example,
op1$invoke refers to interaction contribution invoke of operation call op1.

The return part of an operation call and the reply part of an operation
execution are optional. This is to allow us to model one-way operations.
For example, the asynchronous request-response interaction mechanism
based on callback can be modelled using two one-way operation invocation
as depicted in Figure 6-6.

Besides modelling convenience, the shorthands facilitate the
development of the ISDL2BPEL transformation tool. Given an operation
call or execution, we know directly which interaction contributions
correlate to each other. Otherwise, annotations are necessary to indicate
correlations between interaction contributions [35].

Figure 6-5
Shorthands for operation
calls and operation
executions

Figure 6-6
Callback as two one-way
operation invocations

166 CHAPTER 6 TRANSFORMATION TO EXECUTABLE IMPLEMENTATIONS

Restriction 4: Operation calls and executions of a coordinator must be annotated
with WSDL/BPEL-specific information.

An executable implementation includes WSDL/BPEL-specific

information, such as operation name, port type, and partner link. This
information are not available in a platform-independent coordinator model.
Therefore, a coordinator model that will be transformed to a BPEL process
must be annotated with that information. Annotations that must be given to
a coordinator model are presented in Section 6.6.

6.3.2 Behaviour structure

The modelling restrictions on the behaviour stucture of a coordinator are as
follows.

Restriction 5: The behaviour structure of a coordinator must be a composition of
allowed behavioural patterns, namely sequence, concurrency, selection, and repetition.

This restriction is to allow the mapping from the allowed behavioural
patterns onto the execution orders that are supported by BPEL. The
sequence, concurrency, selection, and repetition patterns can be mapped
onto the BPEL structured activity, i.e., sequence, flow, switch, and while,
respectively. This restriction requires that any complex behaviour structure
should be constructed as a composition of those patterns.

Figure 6-7 depicts the representations of the patterns in ISDL. For
generality reason, the figure uses actions to represent activities. Figure
6-7(i) represents of the sequential execution of actions a and b. Figure
6-7(ii) represents the concurrent execution of actions a and b. Figure
6-7(iii) represents a choice or selection between the execution of action a
and the execution of action b. Figure 6-7(iv) represents a repetition of zero
or more instances of action a.

In the concurrency pattern, the conjunction is optional when no other
activity has to be executed after the execution of all the activities in the
concurrency pattern. Similarly, in the selection pattern, the disjunction is
optional.

 MODELLING RESTRICTIONS 167

a

a

b

a

b

(i) sequence (iv) repetition(ii) concurrency (iii) selection

a b

Restriction 6: The concurrency, selection, and repetition patterns must be represented
using their shorthands, i.e., and-split, or-split, and repetitive behaviour instantiation,
respectively.

The shorthands for and-split, or-split, and repetitive behaviour instantiation

are described in Section 3.3.5. This restriction is to facilitate the
recognition of behavioural patterns used in a coordinator model. For
example, in Figure 6-8(i), the use of the shorthand for and-split makes it
easy to recognise a concurrency pattern. An and-split explicitly indicates
which activities can be executed concurrently, i.e., actions b and c. The
behaviour in Figure 6-8(ii) is equivalent to the behaviour in Figure 6-8(i),
but without the and-split shorthand. The concurrency of actions b and c is
presented implicitly by two sequences {a → b} and {a → c}. Because
concurrency is not modelled explicitly in this case, it is more difficult to
recognise. Pattern recognition is described later in Section 6.4.

Example
Figure 6-9 depicts the coordinator model of an insurance application. The
coordinator receives an application from an applicant and checks whether
the application is of type individual or collective. It then makes an operation
call to a service provider according to the application type. When the
coordinator receives a confirmation as a response, it forwards the
confirmation to the applicant.

Figure 6-7
Representations of the
behavioural patterns in
ISDL

Figure 6-8
Concurrencies with and
without shorthand

168 CHAPTER 6 TRANSFORMATION TO EXECUTABLE IMPLEMENTATIONS

The behaviour structure of this coordinator model is composed of two
patterns: sequence and selection patterns, in which the selection pattern is
nested within the sequence pattern. The sequence pattern consists of
operation execution receiveApplication, the composition of operation calls that
forms the selection pattern, and operation call replyConfirmation. The
selection pattern consists of two operation calls: applyIndividual and
applyCollective. This coordinator model complies with the restrictions on
activities and behaviour structure that have been discussed so far.

6.3.3 Constraints

The modelling restriction on the way to specify constraints, i.e.,
contribution constraints, causality constraints, or repetition constraints, in a
coordinator is as follows.

Restriction 7: Constraints in a coordinator must be specified as function calls.

Simple constraints can be included in a coordinator model and leave the
coordinator model easy to understand. Inclusion of complex constraints,
however, potentially makes a coordinator model difficult to understand. To
avoid that, some detail of a complex constraint can be encapsulated in a
(parameterised) function that is specified in another document. In this way,
complex constraints can be included in a coordinator model as function
calls. A function specification can be informal, e.g., in natural languages, or
formal, e.g., in mathematical expressions, pseudo-code, or programming
languages.

Figure 6-10 depicts an example of a coordinator Pricing (interactions
with other service providers are not shown). Operation execution
calculatePrice receives an order and returns the total price of the order. The
contribution constraint of the reply part of this operation execution

Figure 6-9
Patterns in the
coordinator model of an
insurance application

 PATTERN RECOGNITION 169

specifies that the price must be equal to the result of function calculatePrice()
with the received order as a parameter. This function is specified in another
document, which is depicted in Figure 6-11. This document specifies the
data manipulation that must be performed by the reply part of operation
execution calculatePrice to establish its result.

This approach separates the behaviour structure of a coordinator from
the data manipulation that should be performed by that coordinator. The
behaviour structure is defined by operations and behavioural patterns; the
data manipulation is defined by function specifications.

Besides ease of understanding, constraints that are specified as function
calls facilitate the development of the ISDL2BPEL transformation tool, i.e.,
they accommodate the option that we select to overcome the limitation of
data manipulation in BPEL, as presented later in Section 6.5.

function calculatePrice(Order order)

begin
 total_price = 0.0;
 for each line in order do
 total_price = total_price + (line.quantity × line.price);
 return total_price;
end.

6.4 Pattern recognition

This section presents an approach to recognise and document the
behavioural patterns that form the behaviour structures of a coordinator
model.

6.4.1 Tasks in behaviour structure transformation

The behaviour structure of a coordinator model is composed of behavioural
patterns. Since behavioural patterns determine the execution order of
activities, they must be transformed to BPEL structured activities.

In the transformation of the behaviour structure of a coordinator to
BPEL activities, two successive tasks can be identified: pattern recognition and

Figure 6-10
A function call in an
attribute constraint

Figure 6-11
The specification of
function calculatePrice()
in pseudocode

170 CHAPTER 6 TRANSFORMATION TO EXECUTABLE IMPLEMENTATIONS

pattern realisation. The pattern recognition identifies patterns that form the
behaviour structure of a coordinator model. The pattern realisation
transforms the recognised patterns to BPEL structured activities. In the
ISDL2BPEL transformation tool, the pattern realisation is a part of the
model realisation as presented in Section 6.6.

ISDL represents a behavioural pattern as a set of causality relations. For
example, ISDL represents the sequence of actions a, b, and c as two
causality relations {a → b} and {b → c}. The pattern recognition should
recognise that these casuality relations form a sequence of actions a, b, and
c. In the ISDL2BPEL transformation tool, the pattern recognition also
documents the recognised patterns in an intermediate model. This model is
specified in a language that documents an allowed behavioural pattern, i.e.,
sequence, concurrency, selection, or repetition (see Restriction 5 in Section
6.3.2) as a single concept.

6.4.2 Common behavioural patterns language

The behavioural patterns in an ISDL coordinator model can be directly
transformed to BPEL structured activities. In this case, the pattern
recognition is combined with the pattern realisation. This direct
transformation of an ISDL coordinator model to a BPEL process implies
that ISDL interaction contributions must be transformed into BPEL invoke,
receive, and/or reply activities at the same time. Furthermore, constraints in
the coordinator model must be transformed at the same time. This
approach results in a complex monolithic transformation tool. We
decompose the ISDL2BPEL transformation tool, as depicted in Figure 6-3,
in order to carry out those different tasks or sub-transformations separately.
We use intermediate models between sub-transformations.

An intermediate model is specified in a language that is able to represent
a behavioural pattern as a single concept. To facilitate and support other
transformations, the language should be simple, yet able to contain all
design information in a coordinator model. We define such a language and
call it CBPL (Common Behavioural Pattern Language). It uses the term
‘common’ because the behavioural patterns that can be documented are
common to many specification languages [10, 29, 144].

Figure 6-12 depicts a subset of the CBPL metamodel that is intended
for documenting patterns and a behaviour structure. An activity is an abstract
concept that represents an activity to be performed by a coordinator. An
activity can be an interaction or a structured activity. An interaction activity
represents an activity for interacting with another service. The possible
types for an interaction activity are the parts of an operation call or
execution, i.e., invoke, return, accept, and reply. A structure activity represents an
activity that determines the execution order of other activities.

 PATTERN RECOGNITION 171

Behavioural patterns are specialisations of the structured activity. A
sequence represents one or more ordered activities to be executed
sequentially. A concurrency represents two or more activities that can be
executed concurrently. A selection represent a choice or selection between
one or more cases. A case represent a case constraint and an activity which is
executed when the case constraint is satisfied. A default case is selected when
other cases cannot be selected because their case constraints cannot be
satisfied. A repetition contains an activity to be executed repeatedly while its
repetition constraint holds.

A behaviour defines the behaviour of a coordinator. It contains only one
activity to be performed. When a coordinator should perform many
activities, the activity of the behaviour of this coordinator is a structured
activity that is composed of those activities.

Activity

Sequence Concurrency Repetition Selection

Case

+constraint: String

+constraint: String

DefaultCase

StructuredActivity

Behaviour

+name: String+name: String +activity

+case1..*

+activity 1..* {ordered}

+activity 2..*

+activity +activity

InteractionActivity
+type: String
+constraints: String[]

An intermediate model must contain all the information that is
necessary to produce a BPEL process. It therefore should also include
representations of attributes of ISDL interaction contributions, parameters
and parameter value assignments of ISDL entry and exit points, and
placeholders for WSDL/BPEL-specific informations. We do not show those
representations in Figure 6-12 because they are not related to pattern
recognition and documentation.

Figure 6-12
CBPL metamodel

172 CHAPTER 6 TRANSFORMATION TO EXECUTABLE IMPLEMENTATIONS

Example
Figure 6-13 depicts an intermediate model in CBPL that documents the
behavioural patterns used in the coordinator model in Figure 6-9. A CBPL
intermediate model is expressed in XML.

<cbpl:sequence>

<cbpl:interactionActivity

name=”receiveApplication$accept” ... />

<cbpl:selection>

<cbpl:case constraint=”type = ‘individual’”>

<cbpl:sequence>

<cbpl:interactionActivity

name=”applyIndividual$invoke” ... />

<cbpl:interactionActivity

name=”applyIndividual$return” ... />

</cbpl: sequence>

</cbpl:case>

<cbpl:case constraint=”type = ‘collective’”>

<cbpl:sequence>

<cbpl:interactionActivity

name=”applyCollective$invoke” ... />

<cbpl:interactionActivity

name=”applyCollective$return” ... />

</cbpl: sequence>

</cbpl:case>

</cbpl:selection>

<cbpl:interactionActivity

name=”replyConfirmation$invoke” ... />

</cbpl:sequence>

6.5 Constraint transformation

Restriction 7 in Section 6.3.3 requires that a constraint must be specified as
a function call. It separates the behaviour structure of a coordinator from
the data manipulation that should be performed by that coordinator. We
call their implementations behaviour-structure implementation and function
implementation, respectively. The pattern recognition and realisation
mentioned in Section 6.4 deal with the transformation of the behaviour
structure of a coordinator model to a behaviour-structure implementation.
This behaviour-structure implementation is specified as a BPEL process.

This section presents an approach to transform a function call to an
operation call. In this operation call, the operation provides the function
implementation. We use this approach to deal with the BPEL limitation on

Figure 6-13
An intermediate model
in CBPL

 CONSTRAINT TRANSFORMATION 173

data manipulation. We select this approach after evaluating a number of
options for function implementation.

6.5.1 Evaluation and selection criteria

A function specification can be informal, e.g., in natural languages, or
formal, e.g., in mathematical expressions, pseudo-code, or programming
languages. It is mainly obtained by manual transformation from the
requirements of that function. To be executable, a function specification
must be defined in a programming language. In this case, BPEL and XPath
is considered as a programming language. To our knowledge, when a
function specification is defined informally or in a mathematical expression
or pseudo-code, there is not yet an effective and efficient way to transform
a function specification to a function implementation automatically.

The behaviour-structure and function implementations of a coordinator
model can be mapped onto the same or distinct implementation artefacts.
In case they have to be mapped onto the same implementation artefact, an
additional transformation is required to merge them into the same
implementation artefact.

To analyse options for data manipulation in a BPEL process, we define
the following criteria.
– Feasibility: What support is available for implementing a function

specification?
– Efficiency: What is the execution efficiency of a function call?
– Reusability: Can a function implementation be reused by multiple

behaviour-structure implementations?
– Merging: Does a function implementation have to be merged with a

behaviour-structure implementation?
– Portability: Does a function implementation allow a behaviour-structure

implementation to be portable between different BPEL execution
engines? The function and behaviour-structure implementations do not
have to be merged into the same implementation artefact.

Table 6-1 lists the quality and quantity values to be assigned to those
criteria.

In the development of the ISDL2BPEL transformation tool, we give all
criteria the same weight of importance. If possible, we want to select an
option that has full feasibility, high efficiency, full reusability, no merging,
and is portable. Quantitatively, we select an option that has the highest
score.

One may define different weights of importance for different criteria
when some criteria are considered more important than others. The
selected option determines the constraint transformation that should be
developed.

174 CHAPTER 6 TRANSFORMATION TO EXECUTABLE IMPLEMENTATIONS

Values

Criteria
Quality Quantity

Full 1.0
Limited 0.5 Feasibility

None 0.0
High 1.0

Middle 0.5 Efficiency

Low 0.0
Full 1.0

Limited 0.5 Reusability

None 0.0
Yes 0.0

Merging
No 1.0
Yes 1.0

Portability
No 0.0

To determine the score of an option, we define the following formula.

Score = (w1 × F)+ (w2 × E) + (w3 × R) + (w4 × M) + (w5 × P)

where, wi (i = 1..5) : weight of importance
 F , E, R, M, P : quantity values of feasibility, efficiency, reusability, merging, and

portability criteria, repectively

6.5.2 Options

The options for implementing function specifications are as follows.

Option 1: BPEL and XPath
A function implementation is defined in BPEL and XPath as part of a
behaviour-structure implementation. Data manipulation is done in BPEL
assign activities using XPath expressions. Structured activity constructs, e.g.,
while and switch, can also be used for data manipulation.
– Feasibility: BPEL structured activity and XPath provide limited support

for implementing complex function specifications.
– Efficiency: The function implementation and behaviour-structure

implementation are executed in the same execution instance. Overhead
in calling a function is low; the execution efficiency is high.

– Reusability: The function implementation can only be used by the
behaviour-structure implementation in which the function
implementation is defined.

Table 6-1
Quantity and quality
values for the evaluation
and selection criteria

 CONSTRAINT TRANSFORMATION 175

– Merging: The function implementation have to be merged with the
behaviour-structure implementation to produce an executable
implementation.

– Portability: The behaviour-structure implementation includes the
function implementation. Since the function implementation is defined
in BPEL and XPath, the behaviour-structure implementation is
supported by, and hence portable between, different BPEL execution
engines.

Option 2: Embedded code
A function implementation is defined in a general-purpose implementation
language. The function implementation is then embedded in a behaviour-
structure implementation. This option is supported by extensions to BPEL,
such as BPELJ [19] and Java embedding [97].
– Feasibility: A general-purpose implementation language, e.g., Java,

typically provides full support for implementing complex function
specifications.

– Efficiency: The function implementation and the behaviour-structure
implementation are executed in the same execution instance. Overhead
in calling a function is low; the execution efficiency is high.

– Reusability: The function implementation can only be used by the
behaviour-structure implementation in which the function
implementation is embedded.

– Merging: The behaviour-structure implementation must be merged with
the function implementation to produce an executable implementation.

– Portability: The behaviour-structure implementation can only be
executed on a BPEL execution engine that supports the extension.

Option 3: Server functions
A function implementation is defined in a general-purpose implementation
language. After compilation, the function implementation is deployed in a
BPEL execution engine on which a behaviour-structure implementation will
be executed. The function and behaviour-structure implementations are on
different implementation artefacts. In execution, the behaviour-structure
implementation calls the function implementation. This option is
supported by extensions to BPEL, such as custom functions [1].
– Feasibility: A general-purpose implementation language, e.g., Java or C#,

typically provides full support for implementing complex function
specifications.

– Efficiency: The function implementation and the behaviour-structure
implementation are executed in different execution instances. A
function call establishes an interprocess communication between those
execution instances. The execution efficiency is lower than the

176 CHAPTER 6 TRANSFORMATION TO EXECUTABLE IMPLEMENTATIONS

execution efficiency of the previous options because of the higher calling
overhead.

– Reusability: The function implementation can be used by multiple
behaviour-structure implementations that run on the same BPEL
execution engine. Behaviour-structure implementations on different
BPEL execution engine cannot use the same function implementation.

– Merging: The behaviour-structure implementation and the function
implementation are deployed separately. No merging is required.

– Portability: The behaviour-structure implementation can be executed
only on a BPEL execution engine in which the function implementation
is deployed. Not every BPEL execution engine supports this extension.

Option 4: Function call as operation call
A function implementation is defined as one or more operations that are
provided by Web service(s). A function call in a constraint of a coordinator
model is implemented as an operation call. This option is used in [25, 63,
64, 87].
– Feasibility: The function implementation can be defined in a general-

purpose implementation language, e.g., Java or C#. Such an
implementation language typically provides full support for
implementing complex function specifications.

– Efficiency: The function implementation and the behaviour-structure
implementation are executed in different execution instances. Possibly,
they run on different execution engines. A function call establishes an
interprocess communication (via a communication network) between
those execution instances. Execution efficiency is low because of the
high calling overhead.

– Reusability: Since the function implementation is provided as Web
Services operations, it can be used by multiple behaviour-structure
implementations.

– Merging: The behaviour-structure implementation and the function
implementation are deployed separately. No merging is required.

– Portability: The behaviour-structure implementation is defined only in
BPEL. Therefore, it is portable between different BPEL execution
engines.

Summary
The analysis is summarised in Table 6-2. We conclude that option 4,
function call as operation call, seems the best choice since it has the highest
score. To improve its efficiency, option 4 can be combined with option 1,
such that simple arithmetic operations are implemented in BPEL and
XPath, instead of providing them as Web Service operations. For example,
a repetition typically uses addition or subtraction operation to increase or

 CONSTRAINT TRANSFORMATION 177

decrease its repetition index. Implementing these arithmetic operations in
BPEL and XPath will improve the execution efficiency significantly.

Options

Criteria 1. BPEL and
XPath

2. Code
embedding

3. Server
functions

4. Function as
operation

Feasibility limited full full full
Efficiency high high middle low
Reusability none none limited full
Merging yes yes no no
Portability yes no no yes

Score 2.5 2.0 3.0 4.0

6.5.3 Transformation rules

The ISDL2BPEL transformation tool uses option 4 (function call as
operation call) to transform constraints in a coordinator model. Five
transformation rules are defined and implemented; each of which deals
with constraints that are associated with different model elements. The
rules are independent from each other. They can be applied in any order.

These transformation rules are applied to a CBPL model and result in
another CBPL model. To illustrate the rules, we use the ISDL notations
because we do not define notations for the CBPL concepts. For generality
reasons, an interaction contribution, in this section, is used to represent an
operation call and execution.

Rule 1
This rule deals with the contribution constraint of the accept or return part of an
operation. This contribution constraint determines the message that can be
received by the accept or return part. When such a message is received, the
execution of a coordinator may continue. Figure 6-14 illustrates this rule.

Operation execution oper enables interaction contribution a. The accept
part of this operation execution has contribution constraint [m = fn()],
where m is the message to be received and fn() is a function call. This
operation execution only receives message m that is equal to the result of
fn().

Table 6-2
Comparison between
options

Figure 6-14
Rule 1

178 CHAPTER 6 TRANSFORMATION TO EXECUTABLE IMPLEMENTATIONS

The transformation should replace this structure with operation
execution oper’, operation call Fn’, and interaction contribution a’ that are
to be executed sequentially. Operation execution oper’ implements a part of
operation execution oper, i.e., receiving a message. Operation call Fn’ calls
an operation that implements function fn() and returns a message f.
Interaction contribution a’ implements action a. The causality relation
between operation call Fn’ and interaction contribution a’ has causality
constraint [m = f]. This constraint is equivalent to original contribution
constraint [m = fn()], in which fn() is replaced with the result of operation
call Fn’.

Rule 2
This rule deals with the contribution constraints of the invoke or reply part of an
operation. These contribution constraints determine the message that can be
sent by the invoke or reply part. Figure 6-15 illustrates this rule.

Operation call oper enables interaction contribution a. The invoke part
of this operation call has contribution constraint [m = fn()]. This operation
call only sends message m that is equal to the result of fn().

The transformation should replace this structure with operation call Fn’,
operation call oper’, and interaction contribution a’ that are to be executed
sequentially. Operation call Fn’ calls an operation that implements function
fn() and it returns a message f. Operation call oper’ implements a part of
operation call oper, i.e., sending a message. The invoke part of this operation
call has contribution constraint [m = f]. This constraint is equivalent to
original contribution constraint [m = fn()], in which fn() is replaced with
the result of operation call Fn’.

Rule 3
This rule deals with the causality constraints of an enabling condition. Figure
6-16 illustrates this rule.

Interaction contribution a enables interaction contribution b. The
enabling condition of interaction contribution b has causality constraint

Figure 6-15
Rule 2

Figure 6-16
Rule 3

 CONSTRAINT TRANSFORMATION 179

[fn() = x], where x is a certain value. Interaction contribution b can occur
only if interaction contribution a occurs and this causality constraint is
satisified.

The transformation should replace this structure with interaction
contribution a’, operation call Fn’, and interaction contribution b’ that are
to be executed sequentially. Interaction contributions a’ and b’ implement
interaction contributions a and b, respectively. Operation call Fn’ calls an
operation that implements function fn() and it returns a message f. The
enabling condition of interaction contribution b’ has causality constraint [f
= x]. This constraint is equivalent to original causality constraint [fn() =
x], in which fn() is replaced with the result of operation call Fn’.

Rule 4
This rule deals with the causality constraints in an or-split. Figure 6-17
illustrates this rule.

fn1() = x

fn2() = y

f1 = x

f2 = yFn1’

f2

Fn1’

f1
a

b

a’

b’

An or-split is used to define the choice between interaction
contributions a and b. Interaction contribution a may occur if causality
constraint [fn1() = x] is satisified, and interaction contribution b may
occur if causality constraint [fn2() = y] is satisified.

The transformation should replace this structure with operation calls
Fn1’ and Fn2’ that are to be executed sequentially, followed by a choice
between interaction contributions a’ and b’. Operation calls Fn1’ and Fn2’
call operations that implement functions fn1() and fn2(), respectively. They
return a message f1 and f2, respectively. Interaction contributions a’ and b’
implement interaction contributions a and b, respectively. The causality
constraint of interaction contribution a’ is [f1 = x] that is equivalent to the
original causality constraint [fn1() = x], in which fn1() is replaced with the
result of operation call Fn1’. The causality constraint of interaction
contribution b’ is [f2 = y] that is equivalent to the original causality
constraint [fn2() = y], in which fn2() is replaced with the result of
operation call Fn2’. If the causality constraints of interaction contributions a
and b is defined by the same function fn(), e.g., [fn() = x] for interaction
contribution a and [fn() = y] for interaction contribution b; only one
operation call Fn’ has to be defined preceeding the choice between
interaction contributions a’ and b’.

Figure 6-17
Implementation of
causality constraint in
OR-split

180 CHAPTER 6 TRANSFORMATION TO EXECUTABLE IMPLEMENTATIONS

Rule 5
This rule deals with the repetition constraint of a repetitive behaviour instantiation.
Figure 6-18 illustrates this rule.

Repetitive behaviour instantiation B contains interaction contribution a
to be performed repeatedly while repetition constraint [fn() = true] holds.
In a general case, behaviour B may contain a number of related interaction
contributions.

The transformation should replace this structure with operation call Fn’
that is followed by repetitive behaviour instantiation B’. This behaviour
contains interaction contribution a’ that is followed by another operation
call Fn’. Operation call Fn’ returns a message f. Interaction contribution a’
implement interaction contribution a. Repetitive behaviour B’ has
repetition constraint [f = true]. This constraint is equivalent to original
causality constraint [fn() = true], in which fn() is replaced with the result of
operation call Fn’.

6.5.4 Example

We apply the transformation rules to a service provider DiscountedInvoicing
in Figure 6-19. The execution of this service provider starts when it receives
an order from a customer with price higher than 500 euro [getPrice(order)
> 500]. It checks whether the order can be accepted. If so, the service
provider returns an invoice to the customer. Otherwise, the service returns
a rejection message.

Figure 6-18
Rule 5 for unchanging
condition

Figure 6-19
A service provider

 CONSTRAINT TRANSFORMATION 181

First, we apply Rule 1 to the contribution constraint of operation
execution rcvOrd. It results in coordinator DiscountedInvoicing1 as depicted in
Figure 6-20. For brevity, constraints and attributes that are not relevant to
the application of this rule are omitted. The function call getPrice() is
transformed to an operation call getPrice to a service provider that
implements function getPrice(). The or-split is now enabled with a causality
constraint that refers to the information attribute of the return part of
operation call getPrice [getPrice$return.ι > 500].

Secondly, we apply Rule 4 to the causality constraints in the or-split. It
results in coordinator DiscountedInvoicing2 as depicted in Figure 6-21.
Function call isAccepted() is transformed to operation call isAccepted. The
causality constraints of operation call sendInv and sendRej now refer to the
information attribute of the return part of operation call isAccepted
[isAccepted$return.ι] and [!isAccepted$return.ι], respectively.

Finally, we apply Rule 2 to the contribution constraints of operation
calls sndInv and sndRej. It results in coordinator DiscountedInvoicing3 as
depicted in Figure 6-22. Function calls createInv() and createRej() are
transformed to operation calls createInv and createRej, respectively. The
contribution constraints of operation calls sndInv now refers to information

Figure 6-20
A coordinator resulted
from Rule 1

Figure 6-21
A coordinator resulted
from Rule 4

182 CHAPTER 6 TRANSFORMATION TO EXECUTABLE IMPLEMENTATIONS

attribute of the return part of operation call createInv [sndInv.ι =
createInv$return.ι]. The contribution constraints of operation calls sndRej
now refers to information attribute of the return part of operation call
createRej [sndRej.ι = createRej$return.ι].

DiscountedInvoicing3

rcvOrd

sndInv

sndRej

Invoke:
 : Invoice | = createInv$return.

Invoke:
 : Rejection | = createRej$return.

getPrice

isAccepted

Invoke:
 : Order | = rcvOrder$accept.

Return:
 : Rejection

Invoke:
 : Order | = rcvOrder$accept.

Return:
 : Invoice

createInv

createRej

A service provider that implements the specification of all functions
called in service DiscountedInvoicing3 has to be developed separately. Figure
6-23 depicts such a service provider called FunctionService.

6.6 Model realisation

This section presents an approach to transform a CBPL model to a BPEL
process and WSDL extenstions.

Figure 6-22
A coordinator resulted
from Rule 2

Figure 6-23
A service provider that
implements function
specifications

 MODEL REALISATION 183

6.6.1 Annotations

Restriction 4 in Section 6.3.1 requires that an operation call or execution
should be annotated with WSDL/BPEL-specific information. ISDL provides
a stereotyping mechanism that is similar to the UML 1.3 stereotyping
mechanism [94], i.e., the mechanism adds a stereotype and/or tagged values
to a model element. We use the ability to add tagged values for annotating
operation calls and executions with WSDL/BPEL-specific information.

When an ISDL coordinator model is transformed into a CBPL
intermediate model, its annotations have to be maintained such that the
CBPL intermediate model can be later transformed to a BPEL process.
Figure 6-24 depicts a subset of the CBPL metamodel that is for maintaining
annotations given in an ISDL coordinator model.

An annotated element can be an interaction activity or a behaviour (see Figure
6-12). An annotated element may have a number of annotations. An
annotation consists of a name and a value. A behaviour can be annotated with,
e.g., a namespace that should be given to the BPEL process that is
represented by that behaviour.

6.6.2 Operations

Table 6-3 lists the annotations that must be given to an operation call or
execution.

Name Value

operation The name of the operation to be called or executed.
This annotation is optional when the operation call or execution
already represents the name of the operation to be called or
executed.

portType The portType in which the operation is defined
partnerLink The partnerLink in which the portType is used
namespaceURI The namespace of the portType
wsdl The location, i.e., URI (Uniform Resource Identifier), of the WSDL

description in which the portType is defined

Figure 6-24
Annotation in CBPL

Table 6-3
Annotations for an
operation

184 CHAPTER 6 TRANSFORMATION TO EXECUTABLE IMPLEMENTATIONS

Operation call
Figure 6-25 depicts an operation call op1 with annotations. The annotations
are defined in the lower text boxt. This annotated operation call can be
transformed into the BPEL process as depicted in Figure 6-26.

The operation call is transformed into a BPEL invoke activity of which
the name is equal to the name of the operation call. The information
attributes of the invoke and return part of the operation call are
transformed into the input and output variables of the invoke activity,
respectively. The values of annotations operation, portType, and partnerLink
supply the values of the operation, portType, and partnerLink attributes of the
BPEL invoke activity, respectively. For each information attribute of the
operation call, a BPEL variable is created. Annotation partnerLink is also
transformed into a BPEL partner link. This partner link specifies that the
partner plays the role of ‘provider’. Annotation namespaceURI is used to
define a namespace and namespace alias in the BPEL process.

<bpel:process

xmlns:ns0="wsdlNamespace"

xmlns:ns1=”nsName” ... >

<bpel:partnerLink name=”partnerLinkName”

partnerLinkType=”ns0:partnerLinkNamePLT”

partnerRole=”provider” />

<bpel:variable name=”op1.request”

messageType=”ns1:RequestMessage” />

<bpel:variable name=”op1.response”

messageType=”ns1:ResponseMessage” />

<bpel:invoke name=”op1”

inputVariable=”op1.request”

outputVariable=”op1.response”

operation=”operationName”

portType=”ns1:portTypeName”

partnerLink=”partnerLinkName” />

Figure 6-25
An annotated operation
call

Figure 6-26
A BPEL process from the
transformation of an
operation call

 MODEL REALISATION 185

</bpel:process>

When an operation call is used to model a one-way operation call, the

transformation results in a BPEL invoke activity without attribute
outputVariable.

The transformation also results in WSDL extensions as depicted in
Figure 6-27. Annotation partnerLink is transformed into a partner link type.
The name of this partner link type is equal to the value of this annotation
that is appended with PLT. This partner link type defines a role named
‘provider’. This role is associated with a port type that is specified in
annotation portType. Annotations namespaceURI and wsdl are used to import
the WSDL description that defines the port type.

<wsdl:definitions

 targetNamespace=”wsdlNamespace”

 xmlns:ns1=”nsName” ... >

<plnk:partnerLinkType name=”partnerLinkNamePLT”>

<plnk:role name=”provider”>

<plnk:portType name="ns1:portTypeName"/>

</plnk:role>

</plnk:partnerLinkType>

<wsdl:import

location="wsdlLocation"

namespace="nsName"/>

</wsdl:definitions>

Operation execution
An annotated operation execution as depicted in Figure 6-28 can be
transformed into the BPEL process as depicted in Figure 6-29. The
transformation also results in WSDL extensions that are equal to WSDL
extensions as depicted in Figure 6-27.

Figure 6-27
WSDL extension from
the transformation of an
operation call

Figure 6-28
An annotated operation
execution

186 CHAPTER 6 TRANSFORMATION TO EXECUTABLE IMPLEMENTATIONS

The operation execution is transformed into a BPEL receive and reply
activity. The activity names are equal to the name of the operation
execution appended with _accept and _reply, respectively. The information
attributes of the invoke and return parts of the operation execution are
transformed into the variables of the BPEL receive and reply activities,
respectively. Annotation partnerLink is transformed into a BPEL partner link.
This partner link specifies that the BPEL process plays the role of
‘provider’. Other annotations are used in the same way as in the
transformation of an operation call.

<bpel:process

xmlns:ns0="wsdlNamespace"

xmlns:ns1=”nsName” ... >

<bpel:partnerLink name=”partnerLinkName”

partnerLinkType=”ns0:partnerLinkNamePLT”

myRole="provider" />

<bpel:variable name=”op1.req”

messageType=”ns1:RequestMessage” />

<bpel:variable name=”op1.rsp”

messageType=”ns1:ResponseMessage” />

<bpel:receive name=”op1_accept”

variable=”op1.request”

operation=”operationName”

portType=”ns1:portType”

partnerLink=”partnerLinkName” />

<!-

activities for generating the response message are
inserted here.

-->

<bpws:reply name=”op1_reply”

variable=”op1.response”

operation=”operationName”

portType=”ns1:portType”

partnerLink=”partnerLinkName” />

</bpel:process>

When an operation execution is used to model a one-way operation
execution, the transformation results in a BPEL receive activity only.

Figure 6-29
A BPEL process from the
transformation of an
operation execution

 MODEL REALISATION 187

Operation call and operation execution
The interaction between a service provider and user may consist of a
combination of an operation call and execution. For example, a callback
interaction mechanism can be modelled for the service provider as an
operation execution that is eventually followed by an operation call. The
operation execution is used only for receiving a request message from the
service user and, therefore, it has only the accept part. The operation call is
used only for sending a response message to the service user and, therefore,
it has only the invoke part. Figure 6-30 depicts these operation execution
and call. To indicate that the operation execution and call are related to
each other, they must have the same value for annotation partnerLink.

The transformation of operation execution op1 and operation call op2
that are depicted in Figure 6-30 results in two different roles in a BPEL
partner link, as depicted in Figure 6-31, and its partner link type, as
depicted in Figure 6-32. The partnerlink specifies that this BPEL process
plays the role of ‘provider’, while the partner plays the role of ‘requester’.

<bpel:partnerLink name="Customer"

partnerLinkType="ns0:partnerLinkNamePLT"

myRole="provider"

partnerRole="requester" />

<plnk:partnerLinkType name="partnerLinkNamePLT">

<plnk:role name="provider">

<plnk:portType name="ns1:portTypeName1"/>

</plnk:role>

<plnk:role name="requester">

<plnk:portType name="ns2:portTypeName2"/>

</plnk:role>

</plnk:partnerLinkType>

Figure 6-30
Callback interaction
mechanism in a service
provider

Figure 6-31
Partnerlink with two
roles

Figure 6-32
Partner link type with
two roles

188 CHAPTER 6 TRANSFORMATION TO EXECUTABLE IMPLEMENTATIONS

6.6.3 Compensation

To indicate that an operation call compensates the effect of other operation
calls, we define annotation compensate as depicted in Table 6-4.

Name Value

compensate The name of the operation to be compensated.

Figure 6-33 depicts the use of this annotation. Operation call oper2 is

performed after operation call oper1. If the result received by the return part
of operation oper2 indicates that the operation call does not succeed,
operation call oper3 should be executed to compensate for any changes
made by operation call oper1. Operation call oper3 is hence annotated with
annotation compensate with value referring to the name of the operation call
that has to be compensated, i.e., oper1. To refer to the same partner, an
operation call and its compensation handler must have the same value for
annotation partnerLink. This model can be transformed into the BPEL
process as depicted in Figure 6-34.

Operation call oper3 is transformed into a compensation handler of
operation call oper1. A causality relation that enables operation oper3 is
transformed into a BPEL throw activity. A fault name is generated by the
transformation. A fault handler is defined to catch this fault. A BPEL
compensate activity is defined in the fault handler to handle that fault.

<bpel:process ... >

<bpel:faultHandlers>

<bpel:catch faultName="fault1">

<bpel:compensate scope="oper1" />

</bpel:catch>

</bpel:faultHandlers>

<bpel:sequence>

Table 6-4
Annotation to indicate a
compensation

Figure 6-33
Operation call oper3
compensates operation
call oper1

Figure 6-34
Compensation in a BPEL
process

 MODEL REALISATION 189

...

<bpel:invoke name="oper1" ... >

<bpel:compensationHandler>

<bpel:invoke name="oper3" ... />

</bpel:compensationHandler>

</bpel:invoke>

<bpel:invoke name="oper2" ... />

<bpel:switch>

<bpel:case constraint="oper2 is success">

...

</bpel:case>

<bpel:case constraint="oper2 is not success">

</bpel:throw name="fault1" />

</bpel:case>

</bpel:switch>

</bpel:sequence>

</bpel:process>

6.6.4 Behavioural patterns

The pattern recognition (see Section 6.4) transforms the behavioural
patterns in a coordinator model to CBPL structured activities. The pattern
realisation, which is a part of the model realisation, transforms these CBPL
structured activities to BPEL structured activities. The mapping between
CBPL and BPEL structured activities is shown in Table 6-5.

CBPL structured activity BPEL structured activity

Sequence Sequence
Concurrency Flow
Iteration
- constraint

While
- condition

Selection Switch
Case
- constraint

Case of Switch
- condition

DefaultCase Otherwise of Switch

Example
Using the mapping in Table 6-5, the CBPL intermediate model as depicted
in Figure 6-13 can be transformed into a BPEL process as depicted in
Figure 6-35.

Table 6-5
Mapping between CBPL
structured activity and
BPEL structured activity

190 CHAPTER 6 TRANSFORMATION TO EXECUTABLE IMPLEMENTATIONS

<bpel:sequence>

<bpel:receive name=”receiveApplication” ... />

<bpel:switch>

<bpel:case condition=

”bpws:getVariableProperty(’app’,’type’)=’individual’”>

<bpel:sequence>

<bpel:assign ... />

<bpel:invoke name=”applyIndividual” ... />

<bpel:assign ... />

</bpel:sequence>

</bpel:case>

<bpel:case condition=

”bpws:getVariableProperty(’app’,’type’)=’collective’”>

<bpel:sequence>

<bpel:assign ... />

<bpel:invoke name=”applyCollective” ... />

<bpel:assign ... />

</bpel:sequence>

</bpel:case>

</bpel:switch>

<bpel:reply name=”replyConfirmation” ... />

</bpel:sequence>

6.7 Related work

A model that is given as an input to an automatic transformation tool is
typically restricted. Modelling restrictions specify model elements that may
be used, structures or patterns that may be formed, and annotations that
should be added in order to make a transformation produce correct
implementations. Such constraints should be explicitly defined as in [22,
23, 35, 63, 64, 125]. Otherwise, models may contain model elements or
structures that cannot be transformed. An annotation is necessary if a
model element can be mapped onto an alternative implementation
construct. A set of constraints and annotations can be defined using a
language profiling mechanism [94] as in [9, 35, 71, 92].

Workflow patterns [129] may serve as a set of allowed behavioural
patterns in a coordinator model. It offers more patterns and these patterns
are behavioural patterns that are frequently used in business process
modelling. In this case, the pattern recognition has to identify the workflow
patterns that are used in a coordinator model and document them in an
intermediate model as a composition of the CBPL behavioural patterns.
The mapping between some workflow patterns and the CBPL behavioural
patterns has been defined in [36].

Figure 6-35
Implementation in BPEL

 CONCLUDING REMARKS 191

Transformations from a service composition model to an
implementation can be found in [25, 63, 64, 101, 120]. None of them
indicates how the transformations are (de)composed. Each one develops a
transformation directly based on a transformation specification.

The need for transformation (de)composition is studied in [67]. The
study addresses issues that should be considered in transformation
decomposition and composition, such as order of rule execution, tangling
and scattering concerns, and additive changes. The study focuses on the
development of a transformation language that can handle those issues.

The (de)composition of transformations is also studied in the area of
aspect orientation [8, 66, 118]. A transformation is decomposed according
to concerns, e.g., logging, security, and transaction. Aspect orientation does
not consider the structure and activities of a business process or service
composition model as a concern and, hence, does not decompose a
transformation according to them.

CBPL can be seen as an abstract platform [4] that offers a large set of
alternative implementation languages to realise an intermediate model, such
as BPEL, Java, or C/C++.

The UML 2.1.1 StructuredActivities package [96] supports traditional
structured programming constructs. It provides the concepts of sequence,
conditional, and loop nodes, which are similar to CBPL sequence, selection
and repetition patterns, respectively. However, UML has no single concept
for representing a concurrency. Furthermore, the CBPL metamodel is
simpler than the metamodel of UML StructuredActivities. It better
facilitates the development of the transformation tool.

6.8 Concluding remarks

In this chapter, we have explained the development of our ISDL2BPEL
transformation tool. This tool automates the transformation of the
coordinator model of an orchestration into an executable implementation
in BPEL. A coordinator model that will be transformed should comply with
several modelling restrictions and be annotated with WSDL/BPEL-specific
information.

The ISDL2BPEL transformation tool is developed as a composition of
smaller sub-transformation tools, namely: pattern recognition, constraint
transformation, and model realisation, that have to be performed
sequentially. Intermediate models are used to decouple the sub-
transformations. We have defined a language called CBPL (Common
Behavioural Pattern Language) to specify those intermediate models. The
pattern recognition identifies the behavioural patterns that are used to
compose the behaviour structure of a coordinator model. The constraint

192 CHAPTER 6 TRANSFORMATION TO EXECUTABLE IMPLEMENTATIONS

transformation transforms a function call in a coordinator model into an
operation call. This transformation is to accommodate the approach that we
select to deal with the BPEL limitation on data manipulation. The model
realisation transforms a CBPL model into an executable implementation in
BPEL.

The decomposition of the ISDL2BPEL transformation tool into sub-
transformations tools opens the possibility of reusing the sub-
transformation tools in other transformation tools, as indicated in [4, 36].
This possibility should be further investigated to evaluate whether such
reuse is feasible.

We identify some possible improvements for the transformation tool.
– Incremental transformation. Currently, the transformation tool does not

support incremental transformation. Any modification on the BPEL
process that results from the transformation of a coordinator model is
not preserved when the coordinator model (possibly with some allowed
changes) is transformed again. In an incremental transformation, the
modification on the BPEL process is preserved when the coordinator
model is transformed again. Hence, the BPEL process reflects the
modification that is done directly on it and the change made on the
coordinator model.

– Support for arbitrary behaviour structures. The BPEL flow activity can be used
to support an arbitrary behaviour structure, i.e., a behaviour structure
that cannot be mapped onto the sequence, concurrency, selection,
and/or repetition patterns. Such a structure can be formed by utilising
the BPEL links between the activities that are defined in a BPEL flow
activity. Further investigation is necessary to analyse whether the BPEL
links can represent ISDL causality relations. If so, the mapping between
(types of) arbitrary structures in ISDL and a BPEL flow activity with
links can be defined.

– Support for other types of ISDL causality conditions. Currently, the
transformation tool supports only the enabling and disabling conditions.
The disabling condition, however, has to be used in a choice relation.
Further investigation can be done on the definition of transformation
rules of the disabling and synchronisation condition.

Chapter 7

7. Case study: travel reservation
application

In this chapter, we apply our interaction design concept and
transformations to a case study, namely a travel reservation application
[134], and evaluate the concept and transformations to assess whether they
serve their purposes well and can be used in practice. This case study
demonstrates
– a top-down design process of a business collaboration, from an abstract

interaction to a concrete interaction structure,
– preservation of interaction synchronisation in a concrete interaction

structure, and
– preservation of the atomic property of an abstract interaction, that is

implemented as transaction processing in a concrete interaction
structure.

In this case study, the services to be composed do not exist yet.
This chapter is organised as follows: Section 7.1 presents the case

description for this case study. Sections 7.2 and 7.3 present alternative
design processes to design a travel reservation application. Section 7.4
discusses the design processes. Finally, Section 7.5 evaluates the interaction
concept and design transformations.

7.1 Case description

A travel agent wants to offer its customers the ability to compose and book
a vacation package. A vacation package consists of a return flight and hotel
reservation. The flight and hotel reservations are performed with a flight
and hotel reservation system, respectively. The payment of a reservation is
done using a credit card system provided by a credit card company. The
steps for booking a vacation package are as follows.

194 CHAPTER 7 CASE STUDY: TRAVEL RESERVATION APPLICATION

– Select flight

A customer selects a return flight to his destination on preferred dates,
i.e., the dates of outward and inward flights. The detailed description of
this step is as follows. The customer provides a destination and dates to
the travel agent. The travel agent queries the flight reservation system
about the available flights; presents the customer a list of the available
flights returned by the flight reservation system; and lets the customer
select a return flight that is suitable for him. The travel agent then puts
the selected flight on hold in the flight reservation system. The flight
reservation system returns a confirmation with an expiration date. A
held flight can only be booked before its expiration date.

– Select hotel
The customer selects a hotel at his destination for staying a couple of
days as indicated by the dates of his flight. It is assumed that the
customer checks-in to the hotel on the date of his outward flight; and
checks-out from the hotel on the date of his inward flight. Using
information from the previous step, the travel agent finds a list of the
available hotels from the hotel reservation system; presents the list to the
customer; and lets the customer select his preferred hotel.

– Book the composed vacation package
The customer books the composed vacation package. The customer
provides his credit card information. The travel agent contacts the credit
card system to request an authorisation that guarantees the payment of
the total amount of the price of the composed vacation package. The
credit card system indicates a successful authorisation with an
authorisation identifier. The travel agent books the selected hotel with
the authorisation identifier. The travel agent then confirms the selected
flight with the authorisation identifier. The travel agent charges the
customer a reservation fee and provides the customer with the booking
codes of the hotel and flight. If the flight booking cannot be confirmed
by the flight reservation system, the hotel booking should be cancelled.
Any payment that might have been made should be paid back to the
customer.

A vacation package consists of information about outward flight, inward

flight, and hotel. Flight information consists of flight code, departure place,
destination place, date of flight, and price. Availability information of a hotel
includes hotel name, hotel location, check-in and check-out dates, and price. Figure
7-1 depicts these information types. We assume that function getXyz(abc) is
available to return the value of attribute xyz of information abc. For example,
getDeparture(flight) returns the value of attribute departure of flight
information.

 DESIGN PROCESS 1 195

The original description of this case includes technological
requirements, such as description language, ontologies, discovery
technology, authentication technology, and encryption technology. These
technological requirements are outside the scope of our case study.

Design approach
The case description provides a detailed scenario at an implementation
level. Our interaction design concept and transformations are meant to
enable and encourage interaction design at related abstraction levels. Thus,
we carry out the case study by
– identifying the essential requirements for a travel reservation,
– modelling an abstract interaction that satisfies those essential

requirements, and
– performing a top-down design process to develop an implementation as

described above. Information items in the case description that are not
identified as essential requirements are considered as implementation
requirements.

We present two alternative design processes, which differ in the

identified essential requirements. Different essential requirements result in
different abstract interactions that serve as starting points for design
processes. After presenting the design processes, we discuss our
observations about those design processes.

7.2 Design process 1

In this section, we design a business collaboration between two essential
entities. Non-essential entities are introduced during the design process.

7.2.1 Essential requirements

Two essential entities for making a reservation of a vacation package are
identified: a customer and travel agent. The flight and hotel reservation
systems are supporting entities that are used by the travel agent in order to
deliver its service. The credit card system is not an essential entity because
the payment can be done using other payment methods, e.g., cash, debit
cards, or other online payments such as in [102].

Figure 7-1
Information types

196 CHAPTER 7 CASE STUDY: TRAVEL RESERVATION APPLICATION

The customer wants to book a vacation package consisting of a return
flight to a specific destination and a stay in a hotel in that destination for a
couple of days. To book the flight, the departure place should be known.
The customer is willing to pay the price of the vacation package. The travel
agent provides the flight and hotel reservation as a vacation package. The
travel agent charges the customer the price of the vacation package plus a
reservation fee. The travel agent identifies a customer by the customer’s
name. A vacation package is provided as a complete package of a return
flight and hotel.

7.2.2 Abstract interaction

At a higher abstraction level, we model the collaboration between the
customer and travel agent as an abstract interaction as depicted in Figure
7-2. For brevity, attribute types and constraints are omitted. Names are
used to represent information attributes, instead of indexed information
attributes, e.g., ι1 and ι2. The complete specification of this interaction
design is textually expressed in Figure 7-3. Context actions are included to
allow us to consider the dependency that might exist between the
interaction and causality context. A vacation package is represented as
information attributes flightOut, flightIn, and hotel.

Customer
bCa

b

name
departure
destination
dateStart
dateEnd
flightOut
flightIn
hotel
price

TravelAgent
bT c

d

book

name
departure
destination
dateStart
dateEnd
flightOut
flightIn
hotel
price

Customer = {
a → bC (name: String, departure: String, destination: String, dateStart: Date, dateEnd: Date,
flightOut: Flight, flightIn: Flight, hotel: Hotel, price: double)

[departure = getDeparture(flightOut) = getDestination(flightIn),
destination = getDestination(flightOut) = getDeparture(flightIn),
destination = getLocation(hotel),
dateStart = getDate(flightOut) = getDateIn(hotel),
dateEnd = getDate(flightIn) = getDateOut(hotel)],

bC → b

}

Figure 7-2
Abstract interaction
between the customer
and travel agent

Figure 7-3
Textual expression of the
abstract interaction in
Figure 7-2

 DESIGN PROCESS 1 197

TravelAgent = {

c → bT (name: String, departure: String, destination: String, dateStart: Date, dateEnd: Date,
flightOut: Flight, flightIn: Flight, hotel: Hotel, price: double)

[flightOut in listFlights(departure, destination, dateStart),
flightIn in listFlights(destination, departure, dateEnd),
hotel in listHotels(destination, dateStart, dateEnd),
price = getPrice(flightOut) + getPrice(flightIn) + getPrice(hotel) + fee],

bT → d

}

book (bC: Customer.bC, bT: TravelAgent.bT) [remote]

Interaction book is modelled as a remote interaction, because it should

establish the same set of information values that can be available from
different time moments and at different locations for different participants.

In the travel agent, function listFlights(departure, destination, date) returns a
list of the available flights from a departure place to a destination place on a
specific date. Function listHotels(location, check-in, check-out) returns a list of
the available hotels in a specific location between check-in and check-out
dates.

The contribution constraints of interaction contribution bC of the
customer specifies that
– C1: the customer’s departure place is the departure place of the

outward flight and is the same as the destination place of the inward
flight
[departure = getDeparture(flightOut) = getDestination (flightIn)];

– C2: the customer’s destination place is the destination place of the
outward flight and is the same as the departure place of the inward flight
[destination = getDestination(flightOut) = getDeparture (flightIn)];

– C3: the hotel is located in the customer’s destination place
[destination = getLocation(hotel)];

– C4: the customer’s vacation trip starts on the date of the outward flight
and is the same as the check-in date to the hotel
[dateStart = getDate(flightOut) = getDateIn(hotel)]; and

– C5: the customer’s vacation trip ends on the date of the inward flight
and is the same as the check-out date from the hotel
[dateEnd = getDate(flightIn) = getDateOut(hotel)].

The contribution constraints of interaction contribution bT of the travel

agent specifies that

198 CHAPTER 7 CASE STUDY: TRAVEL RESERVATION APPLICATION

– T1: the outward flight should be in the list of the available flights from a
departure place to a destination place on a specific date.
[flightOut in listFlights(departure, destination, dateStart)];

– T2: the inward flight should be in the list of the available flights from a
departure place to a destination place on a specific date.
[flightIn in listFlights(destination, departure, dateEnd)];

– T3: the hotel should be in the list of the available hotels between check-
in and check-out dates in a specific location
[hotel in listHotels(destination, dateStart, dateEnd)]; and

– T4: the price charged to the customer is the sum of the prices of the
outward flight, inward flight, hotel reservation, and a reservation fee
[price = getPrice(flightOut) + getPrice(flightIn) + getPrice(hotel) +
fee].

7.2.3 Refinement 1 (choreography)

We refine abstract interaction book into a concrete interaction structure as
depicted in Figure 7-4. For brevity, attributes and constraints are omitted.
The refinement is done by applying the interface decomposition pattern
(see Section 4.7.1). This concrete interaction structure models the
choreography between the customer and travel agent. The interactions in
this model are described in Table 7-1. The complete specification of this
intraction design is textually expressed in Figure 7-5.

Figure 7-4
Choreography between
the customer and travel
agent

 DESIGN PROCESS 1 199

Interaction Description

sp Start to compose a vacation package
sf Select a return flight (i.e., outward and inward flights)
sh Select a hotel
pp Pay a composed vacation package
pb Payback the payment for a vacation package
cp Confirm the booking of a vacation package

Customer = {

a → spC (departure: String, destination: String, dateStart: Date, dateEnd: Date),

spC → sfC (flightOut: Flight, flightIn: Flight)

[getDeparture(flightOut) = getDestination(flightIn) = spC.departure,
getDestination(flightOut) = getDeparture(flightIn) = spC.destination,
getDate(flightOut) = spC.dateStart,
getDate(flightIn) = spC.dateEnd],

sfC → shC (hotel: Hotel)

[getLocation(hotel) = spC.destination,
getDateIn(hotel) = spC.dateStart,
getDateOut(hotel) = spC.dateEnd],

shC → ppC (name: String, price: double),

ppC ∧ ¬cpC → pbC (payback: double)

[payback = ppc.price],

ppC ∧ ¬pbC → cpC (code: long[2]),

cpC → b

}

TravelAgent = {

c → spT (departure: String, destination: String, dateStart: Date, dateEnd: Date),

spT → sfT (flightOut: Flight, flightIn: Flight)

[flightOut in listFlights(spT.departure, spT.destination, spT.dateStart),
flightIn in listFlights(spT.destination, spT.departure, spT.dateEnd)]

sfT → shT (hotel: Hotel)

[hotel in listHotels(spT.destination, spT.dateStart, spT.dateEnd)],

Table 7-1
Descriptions of
interactions in Figure
7-4

Figure 7-5
Textual expression of the
choreography in Figure
7-4

200 CHAPTER 7 CASE STUDY: TRAVEL RESERVATION APPLICATION

shT → ppT (name: String, price: double)
[price = getPrice(sfT.flightOut) + getPrice(sfT.flightIn) + getPrice(shT.hotel) + fee)],

ppT ∧ ¬cpT → pbT (payback: double)

[payback = ppT.price],

ppT ∧ ¬pbT → cpT (code: long[2])

[code[0] = getCode(ppT.name, sfT.flightOut, sfT.flightIn),
code[1] = getCode(ppT.name, shT.hotel)],

cpT → d

}

sp (spC: Customer.spC, spT: TravelAgent.spT) [remote]
sf (sfC: Customer.sfC, sfT: TravelAgent.sfT) [remote]
sh (shC: Customer.shC, shT: TravelAgent.shT) [remote]
pp (ppC: Customer.ppC, ppT: TravelAgent.ppT) [remote]
cp (cpC: Customer.cpC, cpT: TravelAgent.cpT) [remote]

This choreography models the steps in a travel reservation. Interaction

sp lets the travel agent know about the customer’s preference. To book a
vacation package, three interactions are used, i.e., interactions pp, pb, and
cp. After the occurrence of interaction pp (i.e., pay a composed vacation
package), either interaction pb (i.e., a complete vacation package cannot
booked and the money is paid back to the customer) or interaction cp (i.e.,
the booking is successfully confirmed) occurs. The occurrences of
interaction cp and pb represents the occurrence and non-occurrence of
abstract interaction book, respectively.

All conformance assessment that is done for this case study is provided
in Appendix A.

7.2.4 Refinement 2 (orchestration)

We refine the travel agent by introducing the supporting entities, i.e., the
flight and hotel reservation systems as depicted in Figure 7-6. It models the
travel agent as an orchestration between a travel agent coordinator
(TACoordinator), flight reservation system (FlightRS) and hotel reservation
system (HotelRS). For brevity, attributes and constraints are omitted. The
interactions in this model are described in Table 7-2. The interactions
between the customer and travel coordinator are the same as the
interactions described in Table 7-1. The complete specification of this
interaction design is textually expressed in Figure 7-7.

 DESIGN PROCESS 1 201

Interaction Participants Description

cp Customer – TACoordinator Confirm a vacation package
gf TACoordinator – FlightRS Get the available flights
hf TACoordinator – FlightRS Hold a flight
bf TACoordinator – FlightRS Book a flight
gh TACoordinator – HotelRS Get the available hotels
bh TACoordinator – HotelRS Book a hotel
ch TACoordinator – HotelRS Cancel a hotel reservation

Customer = {

… ; the same behaviour as in Figure 7-5
}

FlightRS = {

√ → gfF (departure: String, destination: String, dateOut: Date, dateIn: Date, flightsOut:
Flight[], flightsIn: Flight[])

[flightsOut = listFlights(departure, destination, dateOut),
flightsIn = listFlights(destination, departure, dateIn)],

gfF → hfF (flightOut: Flight, flightIn: Flight, expiryDate: Date)

[flightOut in gfF.flightsOut,
flightIn in gfF.flightsIn,
expiryDate = getExpiryDate(currentDate())],

Figure 7-6
The travel agent as an
orchestration

Table 7-2
Descriptions of
interactions in Figure
7-6

Figure 7-7
Textual expression of the
orchestration in Figure
7-6

202 CHAPTER 7 CASE STUDY: TRAVEL RESERVATION APPLICATION

hfF → bfF (name: String, flightOut: Flight, flightIn: Flight, price: double, code: long)
[flightOut = hfF.flightOut,
flightIn = hfF.flightIn,
price = getPrice(flightOut) + getPrice(flightIn),
code = (if currentDate() < hfF.expiryDate

then getCode(name, flightOut, flightIn) else -1)]
}

HotelRS = {

√ → ghH (location: String, dateIn: Date, dateOut: Date, hotels: Hotel[])
[hotels = listHotels(location, dateIn, dateOut)],

ghH → bhH (name: String, hotel: Hotel, price: double, code: long)

[hotel in ghH.hotels,
price = getPrice(hotel),
code = getCode(name, hotel)],

bhH [bhH.code ≥ 0] → chH (code: long)

}

TACoordinator = {

c → spT (departure: String, destination: String, dateStart: Date, dateEnd: Date),

spT → gfT (departure: String, destination: String, dateOut: Date, dateIn: Date, flightsOut:
Flight[], flightsIn: Flight[])

[departure = spT.departure,
destination = spT.destination,
dateOut = spT.dateStart,
dateIn = spT.dateEnd],

gfT → sfT (flightOut: Flight, flightIn: Flight)

[flightOut in gfT.flightsOut,
flightIn in gfT.flightsIn]

sfT → hfT (flightOut: Flight, flightIn: Flight, expiryDate: Date)

[flightOut = sfT.flightOut,
flightIn = sfT.flightIn],

hfT → ghT (location: String, dateIn: Date, dateOut: Date, hotels: Hotel[])

[location = spT.destination,
dateIn = spT.dateStart,
dateOut = spT.dateEnd],

 DESIGN PROCESS 1 203

ghT → shT (hotel: Hotel)
[hotel in ghT.hotels],

shT → ppT (name: String, price: double)

[price = getPrice(sfT.flightOut) + getPrice(sfT.flightIn) + getPrice(shT.hotel) + fee],

ppT → bhT (name: String, hotel: Hotel, price: double, code: long)

[name = ppT.name,
hotel = shT.hotel
price = getPrice(hotel)],

bhT [bhT.code ≥ 0] → bfT (name: String, flightOut: flight, flightIn: Flight, price: double, code:
long)

[name = ppT.name,
flightOut = hfT.flightOut,
flightIn = hfT.flightIn,
price = getPrice(flightOut) + getPrice(flightIn)],

bfT [bfT.code < 0] → chT (code: long)

[code = bhT.code],

bhT [bhT.code < 0] ∨ chT → pbT (payback: double)

[payback = ppT.price],

bfT [bfT.code ≥ 0] → cpT (code: long[2])

[code[0] = bfT.code,
code[1] = bhT.code],

cpT → d

}

sp (spC: Customer.spC, spT: TACoordinator.spT) [remote]
sf (sfC: Customer.sfC, sfT: TACoordinator.sfT) [remote]
sh (shC: Customer.shC, shT: TACoordinator.shT) [remote]
pp (ppC: Customer.ppC, ppT: TACoordinator.ppT) [remote]
pb (pbC: Customer.pbC, pbT: TACoordinator.pbT) [remote]
cp (cpC: Customer.cpC, cpT: TACoordinator.cpT) [remote]

gf (gfT: TACoordinator.gfT, gfF: FlightRS.gfF) [remote]
hf (hfT: TACoordinator.hfT, hfF: FlightRS.hfF) [remote]
bf (bfT: TACoordinator.bfT, bfF: FlightRS.sfF) [remote]

gh (ghT: TACoordinator.ghT, ghH: HotelRS.ghH) [remote]

204 CHAPTER 7 CASE STUDY: TRAVEL RESERVATION APPLICATION

bh (bhT: TACoordinator.bhT, bhH: HotelRS.bhH) [remote]
ch (chT: TACoordinator.chT, chH: HotelRS.chH) [remote]

In Figure 7-6, causality constraints are defined as [succH], [!succH],

[succF], and [!succF]. They represent successful hotel booking [bhT.code >
0], unsuccessful hotel booking [bhT.code < 0], successful flight booking
[bfT.code ≥ 0], and unsuccessful flight booking [bfT.code < 0], respectively.
The occurrence of a booking interaction results in either a successful or an
unsuccessful booking.

The choreography between the customer and travel agent is preserved
by the customer and coordinator. The causality relations between the
interaction contributions of the travel agent are refined. For example, the
causality relation between interaction contributions spT and sfT in Figure 7-4
is refined by inserting interaction gf. It should be emphasised here that
refinement of the choreography into the orchestration is not interaction
refinement, because no interaction in the choreography is refined into a
concrete interaction structure.

7.2.5 Refinement 3 (choreography of booking hotel interaction)

We refine the interactions in the orchestration by focusing on the hotel
booking interaction bh of Figure 7-6. By applying the interface
decomposition pattern, this interaction is refined into a concrete
interaction structure that consists of interactions request, payment, and,
confirm, as depicted in Figure 7-8. For brevity, the figure shows only the
concrete interaction structure and context interaction contributions; and
omits attribute types. This concrete interaction structure models the
choreography between the coordinator and hotel reservation system.
Context interaction contributions are coloured in grey. Interaction request
models a request to book a selected hotel. Interaction payment models the
payment of the selected hotel. Interaction confirm models the confirmation
of the hotel booking. The specification of this model is textually expressed
in Figure 7-9.

 DESIGN PROCESS 1 205

TACoordinator HotelRS

rhT rhH

phT phH

ohT ohH

request

payment

confirm

chH

obH.code ≥ 0

ghH

ppT

bfT
name
hotel

price = getPrice(rhH.hotel)

code = getCode(rhH.name, rhH.hotel)

name = ppT.name
hotel = shT.hotel

price = getPrice(rhA.hotel)

code

pbT

code ≥ 0

code < 0

TACoordinator = {

…
ppT → rhT (name: String, hotel: Hotel)

[name = ppT.name,
hotel = shT.hotel],

rhT → phT (price: double)

[price = getPrice(rhT.hotel)],

phT → ohT (code: long),

ohT [ohT.code ≥ 0] → bfT,

ohT [ohT.code < 0] → pbT
…

}

HotelRS = {

…
ghH → rhH (name: String, hotel: Hotel)

[hotel in ghH.hotels],

rhH → phH (price: double)

[price = getPrice(rhH.hotel)],

phH → ohH (code: long)

[code = getCode(rhH.name, rhH.hotel)],

ohH [ohH.code ≥ 0] → chH
…

}

Figure 7-8
Choreography between
the coordinator and
hotel reservation system
for booking a hotel

Figure 7-9
Excerpt of textual
expression of the
choreography in Figure
7-8

206 CHAPTER 7 CASE STUDY: TRAVEL RESERVATION APPLICATION

request (rhT: TACoordinator.rhT, rhH: HotelRS.rhH) [remote]
payment (phT: TACoordinator.phT, phH: HotelRS.phH) [remote]
confirm (ohT: TACoordinator.ohT, ohH: HotelRS.ohH) [remote]

7.2.6 Refinement 4

We now include a solution for an implementation requirement regarding
payment: “The payment of a reservation is done using a credit card system provided
by a credit card company”. We focus on the payment for the hotel booking in
Figure 7-8. We refine the coordinator by inserting interaction auth, as
depicted in Figure 7-10. Its specification is textually expressed in Figure
7-11.

The customer should provide his credit card information. This credit
card information, together with its authorisation identifier, is used to pay
the booking of the selected hotel. For this purpose, in interaction pp, we
introduce information attribute ccNo to represent credit card information.
In interaction payment, we introduce information attributes ccNo and authID
to represent credit card information and authorisation identifier,
respectively. In addition, in interaction confirm, we introduce information
attribute rcpt to represent the receipt of payment.

TACoordinatorCreditCardSystem
name
ccNo
authID = authorise(name, ccNo)

auC auT
auth

name = ppT.name
ccNo = ppT.ccNo
authID

HotelRS

rhT rhH

phT phH
payment

ccNo = auT.ccNo
authID = auT.ccNo
price = getPrice(rhT.hotel)

ccNo
authID
price = getPrice(rhH.hotel)

ohT ohH

ppT

name
ccNo
price = ...

request

confirm

TACoordinator = {
…
rhT → auT (name: String, ccNo: String, authID: long)

[name = ppT.name,
ccNo = ppT.ccNo],

auT → phT (ccNo: String, authID: long, price: double)

[ccNo = auT.ccNo,
authID = auT.authID,
price = getPrice(rhT.hotel)],

Figure 7-10
The credit card system
is included in the
orchestration

Figure 7-11
Excerpt of textual
expression of the
orchestration in Figure
7-10

 DESIGN PROCESS 2 207

phT → ohT (code: long, rcpt: String),
…

}

HotelRS = {

…
rhH → phH (ccNo: String, authID: long, price: double)

[price = getPrice(rhH.hotel)],

paH → ohH (code: long, rcpt: String)

[code = getCode(rhH.name, rhH.hotel),
rcpt = makeReceipt(phH.ccNo, phH.price),

…
}

CreditCardSystem = {

√ → auC(name: String, ccNo: String, authID: long)
[authID = authorise(name, ccNo)]

}

payment (phT: TACoordinator.phT, phH: HotelRS.phH) [remote]
auth (auC: CreditCardSystem.auC, auT: TACoordinator.auT) [remote]

Alternative implementations for payment interaction
By modeling payment as an abstract interaction, i.e., interaction pp between
the customer and coordinator in Figure 7-6 and interaction payment
between the coordinator and hotel reservation system in Figure 7-8, we
have a number of alternative implementations. As mentioned in Section
7.2.1, the payment can be done using other payment methods, e.g., money
transfer via a bank or online payment.

Different payment methods can be combined in a reservation of a
vacation package. For example, the payment interaction between the
customer and coordinator can be done using money transfer via a bank,
while the payment interaction between the coordinator and flight or hotel
reservation system can be done using credit card.

7.3 Design process 2

In this section, we design a business collaboration between three essential
entities. An intermediary entity is introduced during the design process.
This design process is an alternative to design process 1.

208 CHAPTER 7 CASE STUDY: TRAVEL RESERVATION APPLICATION

7.3.1 Essential requirements

Three essential entities are identified: a customer, a flight reservation system, and
a hotel reservation system. The travel agent and credit card system are
considered non-essential entities. In real life, a customer can book a return
flight and hotel to compose a vacation package without a travel agent. The
credit card system is not an essential entity because the payment can be
done using other payment methods.

The customer wants to book a vacation package for a couple of days at a
destination. The vacation days are identified by the date he starts and ends
his vacation trip. To plan his trip, his departure place should be known. The
customer is willing to pay the price of his vacation package and a reservation
fee, if any. The flight and hotel reservation systems provide a return flight
and hotel reservation, respectively. The customer is identified by his name.

In a vacation package, both flight and hotel must all be successfully
booked. If one of them cannot be booked, the other must not be booked
either.

7.3.2 Abstract interaction

At a higher abstraction level, we model the collaboration between the
essential entities as an abstract multilateral interaction, as depicted in Figure
7-12. The ‘all or none’ characteristic of the flight and hotel bookings is
represented by the atomic property of the abstract interaction. For brevity,
attribute types are omitted. The complete specification of this interaction
design is textually expressed in Figure 7-13. Context actions are included to
allow us to consider the dependency that might exist between the
interaction and its causality context. A vacation package is represented as
information attributes flightOut, flightIn, and hotel.

 DESIGN PROCESS 2 209

Customer = {

a → bC (name: String, departure: String, destination: String, dateStart: Date, dateEnd: Date,
flightOut: Flight, flightIn: Flight, hotel: Hotel, price: double)

[departure = getDeparture(flightOut) = getDestination(flightIn),
destination = getDestination(flightOut) = getDeparture(flightIn),
destination = getLocation(hotel),
dateStart = getDate(flightOut) = getDateIn(hotel),
dateEnd = getDate(flightIn) = getDateOut(hotel)],

bC → b

}

FlightRS= {

e → bF (name:String, departure: String, destination: String, dateOut: Date, dateIn: Date,
flightOut: Flight, flightIn: Flight, price: double)

[flightOut in listFlights(departure, destination, dateOut),
flightIn in listFlights(destination, departure, dateIn),
price = getPrice(flightOut) + getPrice(flightIn)],

bF → f

}

HotelRS = {

Figure 7-12
An abstract multilateral
interaction between a
customer, flight, and
hotel reservation system

Figure 7-13
Textual expression of
interacting behaviours in
Figure 7-12

210 CHAPTER 7 CASE STUDY: TRAVEL RESERVATION APPLICATION

g → bH (name: String, location: String, dateIn: Date, dateOut: Date, hotel: Hotel, price:
double)

[hotel in listHotels(location, dateIn, dateOut),
price = getPrice(hotel)],

bH → h

}

book (bC: Customer.bC, bF: FlightRS.bF, bH: HotelRS.bH)

[bC.name = bF.name = bH.name,
bC.departure = bF.departure,
bC.destination = bF.destination = bH.location,
bC.dateStart = bF.dateOut = bH.dateIn,
bC.dateEnd = bF.dateIn = bH.dateOut,
bC.flightOut = bF.flightOut,
bC.flightIn = bF.flightIn,
bC.hotel = bH.hotel,
bC.price = bF.price + bH.price + fee]

The customer’s behaviour is the same as the customer’s behaviour in

design process 1 (see Figure 7-2 and Figure 7-3). The contribution
constraints of interaction contribution bF of the flight reservation system
specifies that
– F1: the outward flight should be in the list of the available flights from a

departure place to a destination place on a specific date.
[flightOut in listFlights(departure, destination, dateStart)];

– F2: the inward flight should be in the list of the available flights from a
departure place to a destination place on a specific date.
[flightIn in listFlights(destination, departure, dateEnd)]; and

– F3: the price is the sum of the prices of the outward and inward flights
[price = getPrice(flightOut) + getPrice(flightIn)].

The contribution constraints of interaction contribution bH of the hotel

reservation system specifies that
– H1: the hotel should be in the list of the available hotels between check-

in and check-out dates in a specific location
[hotel in listHotels(location, dateIn, dateOut)]; and

– H2: the price is the price of the hotel reservation
[price = getPrice(hotel)].

The distribution constraints of interaction book specifies that

– D1: the customer that flies with the flights is the customer that stays in
the hotel

 DESIGN PROCESS 2 211

[bC.name = bF.name = bH.name];
– D2: the customer’s departure place is the departure place of the

outward flight
[bC.departure = bF.departure];

– D3: the customer’s destination place is the destination place of his
outward flight and is the same as the location of the hotel
[bC.departure = bF.destination = bH.location];

– D4: the customer’s vacation trip starts on the date of the outward flight
and is the same as the check-in date to the hotel
[bC.dateStart = bF.dateOut = bH.dateIn];

– D5: the customer’s vacation trip ends on the date of the inward flight
and is the same as the check-out date from the hotel
[bC.dateEnd = bF.dateIn = bH.dateOut];

– D6: the outward flight reserved by the customer is the outward flight
provided by the flight reservation system
[bC.flightOut = bF.flightOut];

– D7: the inward flight reserved by the customer is the inward flight
provided by the flight reservation system
[bC.flightIn = bF.flightIn];

– D8: the hotel reserved by the customer is the hotel provided by the
hotel reservation system
[bC.hotel = bH.hotel]; and

– D9: the price charged to the customer is the sum of the prices
demanded by the flight and hotel reservation systems and a reservation
fee
[bC.price = bF.price + bH.price + fee].

7.3.3 Concrete interaction structure

We refine abstract interaction book by applying the intermediary
introduction pattern (see Section 4.7.4). A travel agent is introduced as an
intermediary between the customer, flight and hotel reservation system, as
depicted in Figure 7-14. The behaviour of the travel agent defines the
business logic of the collaboration. For brevity, attributes and constraints
are omitted.

From the customer’s view, the occurrences of interactions cp and pb
represent the occurrence and non-occurrence of abstract interaction book,
respectively. From the flight reservation system’s view, the successful flight
booking in interaction bf represents the occurrence of abstract interaction
book. The unsuccessful flight booking or the non-occurrence of interaction
bf represents the non-occurrence of abstract interaction book. From the
hotel reservation system’s view, the successful hotel booking in interaction
bh and the non-occurrence of interaction ch represent the occurrence of

212 CHAPTER 7 CASE STUDY: TRAVEL RESERVATION APPLICATION

abstract interaction book. The successful hotel booking that is followed by
the occurrence of interaction ch, the unsuccessful hotel booking, or the
non-occurrence of interaction bh represents the non-occurrence of abstract
interaction book.

Customer FlightRSTravelAgent
gfT

bfT

spT

ppT

gfF

bfF

spC

ppC

a

sfTsfC

shTshC

HotelRS
ghT ghH g

hfT hfF

bhT bhH

chT chH h

succF

!succF

succH
succH

sp

sf

sh

pp

gf

hf

bf

gh

bh

ch

cpTcpCb
cp

pbTpbC
pb

succH

e

f

!succH

succF

Transaction processing
To preserve the atomic property of abstract interaction book, the travel
agent implements transaction processing with compensation [47, 99] for
the flight and hotel booking. For modelling the transaction processing, we
consider not only the occurrence and non-occurrence of an interaction, but
also two possible outcomes of the occurrence of an interaction: a positive
and a negative result. A positive result is the intended result of an interaction.
A negative result is an anticipated but unintended result of an interaction.
For example, the positive result of interaction bf represents a successful
flight booking [succF]. The negative result represents an unsuccessful flight
booking [!succF].

Compensation is used to cancel or reverse the effects of a completed
interaction when another interaction establishes a negative result or does
not occur. Compensation is application specific [99]. In Figure 7-14,
interaction ch is to compensate interaction bh, when interaction bf
establishes a negative result.

We define two requirements for transaction processing with
compensation that preserves the atomic property of an abstract interaction.

Figure 7-14
The travel agent as an
intermediary between
the customer, flight and
hotel reservation
systems

 DESIGN PROCESS 2 213

– TR1: If a final interaction occurs with a positive result and is not
cancelled; all other final interactions should occur with positive results
and not be cancelled.

– TR2: If a final interaction occurs with a negative result, occurs with a
positive result but is cancelled, or does not occur; every other final
interaction should occur with a negative result, occur with a positive
result but be cancelled, or not occur.

We check whether the model in Figure 7-14 satisfies requirements TR1

and TR2. We determine the following final interaction contributions:
– in the customer, interaction contribution cpC,
– in the flight reservation system, interaction contribution bfF, and
– in the hotel reservation system, interaction contribution bhH.
Interactions cp, bf, and bh are hence the final interactions.

Requirement TR1:
– If interaction cp occurs, interactions bf and bh have occurred with

positive results.
– If interaction bf occurs with a positive result, interaction bh has occurred

with a positive result and interaction cp is enabled to occur.
– If interaction bh occurs with a positive result and is not cancelled,

interaction bf has occurred with a positive result and interaction cp is
enabled to occur.

Requirement TR1 is satisfied.

Requirement TR2:
– If interaction cp does not occur, interaction bf has occurred with a

negative result or does not occur; or interacton bh has occurred with a
negative result, has occurred with a positive result but has been
cancelled, or does not occur.

– If interaction bf occurs with a negative result, interaction bh has
occurred but will be cancelled. Interaction cp will not occur.

– If interaction bf does not occur, interaction bh has occurred with a
negative result or does not occur. Interaction cp will not occur.

– If interaction bh occurs with a negative result, interactions bf and cp will
not occur.

– If interaction bh occurs with a positive result but is cancelled, interaction
bf has occurred with a negative result. Interaction cp will not occur.

– If interaction bh does not occur, interactions bf and cp will not occur.
Requirement TR2 is satisfied.

214 CHAPTER 7 CASE STUDY: TRAVEL RESERVATION APPLICATION

Both requirements TR1 and TR2 are satisfied. We conclude that the
atomic property of abstract interaction book is preserved in the concrete
interaction structure in Figure 7-14.

Interaction synchronisation
We check whether the concrete interaction structure in Figure 7-14
provides synchronisation as provided by abstract interaction book in Figure
7-12, i.e., whether conformance requirement IR4 holds.

Final interaction cp depends on
– context action a via interactions pp, sh, sf, and sp;
– context action e via interactions bf, hf, and gf; and
– context action g via interactions bf, bh, and gh.

Final interaction bf depends on
– context action a via interactions hf, gf, and sp;
– context action e via interactions hf and gf; and
– context action g via interactions bh and gh.

Final interaction bh depends on
– context action a via interactions pp, sh, sf, and sp;
– context action e via interactions gh, hf, and gf; and
– context action g via interactions gh.

Every final interaction depends on the same context actions, i.e., concrete
actions a, e, and g. We conclude that the concrete interaction structure
provides synchronisation as provided by abstract interaction book. The
complete conformance assessment of this concrete interaction structure is
provided in Appendix A.

7.4 Discussion

In this section, we discuss issues regarding the design processes.

Essential requirements and design processes
Design processes 1 and 2 show that different choices of essential
requirements leads to different design processes. In interaction design, the
identification of essential entities must be done in the first place. Without
knowing which entities are going to interact, we cannot identify the
responsibility of each participating entity.

In design process 1, we choose the customer and the travel agent as the
essential entities (see Figure 7-2). In design process 2, we choose the

 DISCUSSION 215

customer, flight and hotel reservation systems as the essential entities (see
Figure 7-12).

Although they start from different sets of identified essential
requirements and thus different abstract interactions, the implementation
requirements in the case description lead the design processes to result in
similar concrete interaction structures (see Figure 7-6 and Figure 7-14).
Figure 7-15 illustrates this possibility. An abstract interaction can be refined
into multiple alternative concrete interaction structures, e.g., abstract
interaction D1 can be refined into concrete interaction structures D1.1 and
D1.2. Abstract interaction D2 can be refined into concrete interaction
structures D2.1 and D2.2. Concrete interaction structure D1.2 can be
similar to or the same as concrete interaction structure D2.1.

Transaction processing
In design process 1, the concrete interaction structure without transaction
processing as depicted in Figure 7-16 conforms to the abstract interaction
in Figure 7-2. The occurrences of interactions cp and pb represent the
occurrence and non-occurrence of abstract interaction book, respectively.
Abstract interaction book does not impose a requirement that transaction
processing is necessary in an implementation. The transaction processing in
Figure 7-6 is defined to satisfy an implementation requirement. The
correctness of the transaction processing hence should be checked against
that implementation requirement, and not against requirements TR1 and
TR2 as defined in Section 7.3.3.

In design process 2, the atomic property of abstract interaction book in
Figure 7-12 imposes a requirement that transaction processing is necessary
in an implementation. The transaction processing in Figure 7-14 hence
should be checked against requirements TR1 and TR2.

Figure 7-15
The same concrete
interaction structure
implements different
abstract interactions

216 CHAPTER 7 CASE STUDY: TRAVEL RESERVATION APPLICATION

Customer FlightServiceTravelAgent
gfA

bfA

spA

ppA

gfF

bfF

spC

ppC

a c

d

sfAsfC

shAshC

HotelService
ghA ghH

hfA hfF

bhA bhH

succF

!succF

sp

sf

sh

pp

gf

hf

bf

gh

bh

cpAcpCb
cp

pbApbC
pb

!succH

succH

Negative results and exceptions
We distinguish between a negative result and an exception message. A
negative result is part of the application logic. An exception message is
concerned with an unwanted event that is generated by (an) underlying
service(s) during execution. An exception message can indicate, e.g., buffer
overflow, connection termination, locked database, or insufficient memory
space. We do not consider an exception message as part of the application
logic. If an interaction returns an exception message, the interaction simply
does not occur. Of course, an exception handler can be defined to allow
that the execution of the application continues or terminates normally.
Exceptions and exception handling are outside the scope of our case study
and we leave them for future work.

7.5 Evaluation

In this section, we evaluate our interaction design concept and
transformations to assess whether they serve their purposes well and can be
used in practice.

Interaction concept
We evaluate our interaction concept from the perspectives of the targeted
users: business analysts and application designers. A business analyst uses the
interaction concept to model interactions at higher abstraction levels. An

Figure 7-16
Orchestration of a
customer, flight and
hotel resercation system
without transaction
processing

 EVALUATION 217

application designer uses the interaction concept to model interactions at
lower abstraction levels. Regardless of the abstraction level at which a design
is specified, a design should be complete and precise.

The interaction concept allows a business analyst to model a complete
collaboration between business entities as a single abstract interaction. It
also allows a business analyst to model a complete business collaboration as
a concrete interaction structure, without having to deal with the
implementation details of the interactions in that interaction structure.

The interaction concept allows an application designer to develop a
complete interaction design at an implementation level, in which all
interactions can be realised using available interaction mechanisms. All
interactions in Figure 7-10, for example, are modelled as remote
interactions. A remote interaction can be implemented as a synchronous
request-response mechanism (see Chapter 5).

The contribution and distribution constraints of the interaction concept
allow business analysts to model a business collaboration precisely. The
contribution constraints of an abstract interaction allow a business analyst
to specify precisely the participants’ responsibilities in the establishment of
the interaction result and their views on it. The distribution constraints
allow the business analyst to specify precisely the relations between the
participants’ views.

Similarly, at lower abstraction levels, the contribution and distribution
constraints allow an application designer to specify a concrete interaction
precisely.

Design transformations
We have shown that our design transformation can be used in the design
process of a service composition. However, when an abstract interaction is
refined into a complex concrete interaction structure, the conformance
assessment consumes a large manual effort. Tool supports can be developed
to facilitate the conformance assessment in a (semi-)automatic way.

Chapter 8

8. Case study: enterprise application
integration

In this chapter, we use our interaction concept and the ISDL2BPEL
transformation tool to carry out a case study, namely enterprise application
integration (EAI) for an order management system [123]. We evaluate
whether the interaction concept and the transformation tool serve their
purposes well and can be used in practice.

This chapter is organised as follows: Section 8.1 introduces EAI and
presents an approach to design an integration solution. Section 8.2
describes the integration case. Section 8.3 presents the design of a solution
for the integration case. Section 8.4 discusses the possibility of defining an
integration solution at a high abstraction level. Finally, Section 8.5 evaluates
the interaction concept and transformation tool.

8.1 EAI approach

This section introduces enterprise application integration (EAI) and
presents an approach to design an integration solution that we use in the
case study.

8.1.1 Introduction to EAI

Enterprise application integration (EAI) is an effort to make existing
enterprise applications, that are usually designed separately, interoperable
with each other. It results in an integration solution that enables the
existing applications to interact with each other to achieve a specific goal.

Two integration architectures are identified: the point-to-point and hub-
and-spoke architectures [42]. In the point-to-point architecture as illustrated
in Figure 8-1, the existing applications interact directly with each other.

220 CHAPTER 8 CASE STUDY: ENTERPRISE APPLICATION INTEGRATION

In the hub-and-spoke architecture as illustrated in Figure 8-2, the
existing applications interact indirectly with each other via a mediator
between them.

Service-oriented computing emerges as a paradigm to support
enterprise application integration [42, 77]. In service-oriented computing,
an application exposes its external functionality without revealing the
internals of the application. This allows an enterprise to make its
applications interoperable with other enterprises’ applications, while safely
keeping its valuable assets, e.g., business logic and data, from the other
enterprises’ sight.

8.1.2 An integration approach

In this case study, we follow an integration approach [105, 112] that is for
designing a mediator between the applications being integrated. This
integration approach enables business analysts to participate actively in the
design of an integration solution. Also, it facilitates automation of parts of
the integration process.

The integration approach consists of the following steps. These steps are
illustrated in Figure 8-3.

In Step 1, the platform-independent service descriptions of the
applications being integrated are derived, by abstracting from platform-
specific information. In terms of the MDA approach [90, 91], this means
that the service PSMs (platform-specific models) of the applications being
integrated are transformed to their respective service PIMs (platform-
independent models).

Figure 8-1
Point-to-point
architecture

Figure 8-2
Hub-and-spoke
architecture

 CASE DESCRIPTION 221

In Step 2, the service PIMs are semantically enriched by adding
information that cannot be (automatically) derived from the service PSMs.
For example, a service PSM may be complemented by some text document
that describes part of the service in natural language. The purpose of
semantic enrichment is to make the service PIMs complete and precise.

In Step 3, a mediator between the service PIMs is designed as an
integration solution. Since the mediator is designed at the PIM level, this
step enables the more active participation of business analysts. In Step 4,
the correctness of the mediator is verified using one or more analysis
techniques.

Finally, in Step 5, a mediator PSM is derived from the mediator PIM, by
adding platform-specific information. Further, the mediator PSM is
(automatically) transformed to an executable implementation.

We follow this integration approach by using our design concepts for
modelling service PIMs and a mediator PIM. We then use our ISDL2BPEL
transformation tool to transform the mediator PIM to an executable
implementation in BPEL.

8.2 Case description

An ordering application (OA) of a customer company Blue will be integrated
with a customer relation management (CRM) and an order management
(OM) system of a manufacturing company Moon. Blue’s OA and Moon’s
CRM and OM are Web Services applications. All interactions are
implemented as Web Services operation invocations.

Blue’s OA interacts using a simplified RosettaNet PIP3A4 message
format. Blue’s OA first sends a PIP3A4 Purchase Order Request
(PIP3A4POR) to Moon. A purchase order request contains one or more
items to be ordered. In return, Blue’s OA receives an Acknowledgment of
Receipt indicating that Moon has received the purchase order request.
Blue’s OA then waits for a PIP3A4 Purchase Order Confirmation
(PIP3A4POC) from Moon with a status that indicates whether the purchase
order request is accepted, rejected, or pending. Upon receipt of a purchase

Figure 8-3
Integration approach

222 CHAPTER 8 CASE STUDY: ENTERPRISE APPLICATION INTEGRATION

order confirmation, Blue’s OA sends an Acknowledgment of Receipt to
Moon. Figure 8-4 depicts the types of messages to interact with Blue’s OA.

Moon’s OM interacts using a proprietary data model and
communication protocol. Moon’s OM expects Blue to create a new order
using a separate message containing a customer ID. It returns an order ID
with which Blue can add the ordered items one-by-one to the created
order. Moon’s OM returns an acknowledgment each time an item is added
to the order. After adding all items to the order, Blue must close the order.
Moon’s OM returns the number of items in the order. It then starts to send
confirmations; each of which indicates the order status of an item in the
order, i.e., accepted, rejected, or pending. Blue should return an
acknowledgment for each confirmation. Figure 8-5 depicts the types of
messages to interact with Moon’s OM.

Moon’s CRM returns the customer ID of a given customer. Figure 8-6
depicts the types of messages to interact with Moon’s CRM.

Figure 8-4
Messages to interact
with Blue’s OA

Figure 8-5
Messages to interact
with Moon's OM

 INTEGRATION SOLUTION 223

The information model of the original description of this integration

case is larger than the information models that are depicted in Figure 8-4,
Figure 8-5, and Figure 8-6, e.g., it contains information about customer
address, shipment addresses, telephone numbers, e-mails, units of
products, dates of order, dates of shipment, etc. As we focus on the design
of the behaviour of an integration solution, we consider only the necessary
information for defining an integration solution.

8.3 Integration solution

This section illustrates the application of the integration approach
presented in Section 8.1.2 to the integration case described in the previous
section. We use our interaction concept to specify the interactions in the
integration solution.

Step 1: Abstraction from service PSMs to service PIMs
In this step, we derive the platform-independent service descriptions of
Blue’s OA and Moon’s CRM and OM from their WSDL descriptions. This
step results in the service PIMs that are depicted in Figure 8-7. We model
the operation calls and operation executions of the applications using their
shorthands (see Section 6.3.1). Names are used to represent information
attributes, i.e., req and rsp, instead of indexed information attributes, e.g., ι1
and ι2.

Blue’s OA has one operation call and one operation execution.
Operation call por is for sending a purchase order request (PIP3A4POR)
and receiving the acknowledgment for that purchase order request.
Operation execution poc is for receiving a purchase order confirmation
(PIP3A4POC) and sending the acknowledgment for that purchase order
confirmation.

Moon’s CRM has one operation execution only. Operation execution
srch is for receiving a search string containing a customer’s name and
sending the customer ID of that customer.

Moon’s OM has three operation executions and one operation call.
Operation executions new, add, and close are for creating a new order, adding
an item to an order, and closing an order, respectively. Operation call conf is
for confirming the status of an item of an order

Figure 8-6
Messages to interact
with Moon's CRM

224 CHAPTER 8 CASE STUDY: ENTERPRISE APPLICATION INTEGRATION

Moon OM

Blue OA Invoke:
req: PIP3A4POR
Return:
rsp: Acknowledgment

Accept:
req: PIP3A4POC
Reply:
rsp: Acknowledgment

Moon CRMAccept:
req: SearchCustomerReq
Reply:
rsp: SearchCustomerRsppor

poc

srch

Accept:
req: NewOrderReq
Reply:
rsp: NewOrderRsp

Accept:
req: AddItemReq
Reply:
rsp: AddItemRsp

Accept:
req: CloseOrderReq
Reply:
rsp: CloseOrderRsp

Invoke:
req: ConfirmItemReq
Return:
rsp: ConfirmItemRsp

new

add

close

conf

Step 2: Semantic enrichment of the service PIMs
In this step, we define the relation between the operation calls and
operation executions in Blue’s OA and Moon’s OM, based on the informal
description in Section 8.2. Figure 8-8 depicts the semantically enriched
service PIMs of Blue’s OA and Moon’s CRM and OM. The repetitive steps
in Moon’s OM are made explicit and modelled as repetitive behaviour
instantiations.

Step 3: Design of the mediator PIM
In this step, we design a mediator PIM between the semantically enriched
service PIMs of Blue’s OA and Moon’s CRM and OM. The definition of the
mediator PIM consists of the definition of
– the offered and requested services of the mediator;
– the composition of these services by relating their respective operation

executions and operation calls; and
– the information mapping between the information attributes of the

operation executions and operation calls.

The mediator offers one service that must match the requested service

of Blue’s OA. This service can initially be defined as the ‘complement’ of
the requested service of Blue’s OA. The complement of a service is
obtained by changing each operation call into an operation execution, and
vice versa, while keeping the same information attributes. Analogously, the
requested services of the mediator can be obtained by complementing the
offered services of Moon’s CRM and OM.

Figure 8-7
Service PIMs of Blue's
OA and Moon's CRM
and OM

 INTEGRATION SOLUTION 225

Blue OA

por

poc Moon OM

new

add

close

conf

Add

Confirm

add

conf

Moon CRM

srch

Accept:
req: SearchCustomerReq
Reply:
rsp: SearchCustomerRsp

Accept:
req: NewOrderReq
Reply:
rsp: NewOrderRsp

Accept:
req: AddItemReq
Reply:
rsp: AddItemRsp

Accept:
req: CloseOrderReq
Reply:
rsp: CloseOrderRsp

Invoke:
req: ConfirmItemReq
Return:
rsp: ConfirmItemRsp

Invoke:
req: PIP3A4POR
Return:
rsp: Acknowledgment

Accept:
req: PIP3A4POC
Reply:
rsp: Acknowledgment

The design of the mediator can now be approached as the search for a
composition of the requested services from Moon’s CRM and OM, which
conforms to the offered services to Blue’s OA. The structure of this
composition is defined as causality relations among the operation calls and
operation executions. Figure 8-9 depicts the obtained mediator PIM. For
brevity, information attributes are omitted.

Blue OA

por

poc Moon OM

new

add

close

conf

Add

Confirm

add

conf

Moon CRM

srch

Mediator

Add

Confirm

por srch

new

add add

close

poc

conf conf

Figure 8-8
Semantically enriched
service PIMs of Blue’s
OA and Moon’s CRM
and OM

Figure 8-9
Mediator PIM

226 CHAPTER 8 CASE STUDY: ENTERPRISE APPLICATION INTEGRATION

The definition of information mapping between information attributes
of the operation calls and operation executions can be approached as a
refinement of the causality relations among the operation calls and
operation executions. This information mapping defines how the value of
the information attribute of an operation call or operation execution is
generated from the values of the information attributes of the other
operation calls and/or operation executions.

The information mapping between the attributes of the operation
executions and operation calls of the mediator is illustrated in Figure 8-10.
The information mapping is used to specify constraints in the mediator
PIM.

Step 4: Verification of the mediator PIM
In this step, we verify the mediator PIM by means of simulation. The
simulation of ISDL behaviours is supported by the Grizzle tool [57, 109].
Simulation allows a designer to analyse the possible orderings of operation
occurrences, as well as the information results that are established in these
operations. In addition, the Grizzle tool provides hooks in the simulation
process to execute application code upon execution of an operation. This
enables the simulated mediator to perform real Web services invocations
and to incorporate the results that are returned by Web services during the
simulation. For this purpose, stub-code is linked to a modelled Web-
services operation call. Furthermore, the simulator allows external
applications to invoke a modelled Web-services operation execution.

Figure 8-10
Information mapping

 DISCUSSION 227

Step 5: Derivation of the mediator PSM
In this final step, we transform the mediator PIM to a mediator PSM in
terms of BPEL. Further, we transform the mediator PSM to an executable
implementation in BPEL. The mediator PSM should contain WSDL/BPEL-
specific information, as defined in Chapter 6.

We annotate the mediator PIM in Figure 8-9 with WSDL/BPEL-
specific information. The following annotations are given to an operation
call or operation execution: operation, portType, partnerLink, namespaceURI,
and wsdl (see Table 6-3). Figure 8-11 illustrates the annotations that are
given to operation execution por.

Mediator

por

Accept:
poReq: PIP3A4POR
Reply:
ack: Acknowledgment
operation receiveRequest,
portType MediatorPortType,
partnerLink Customer
namespaceURI mooncompany,
wsdl http://sws-challenge.org/...

After the model is properly annotated, the model is given as an input to
the ISDL2BPEL transformation tool. The transformation tool produces a
BPEL process that is ready to be deployed on a BPEL execution engine.

8.4 Discussion

In the previous section, we use our interaction concept to specify operation
invocations. An integration solution is defined at that abstraction level. In
this section, we discuss the possibility of using the interaction concept at a
high abstraction level and, thus, defining an integration solution at a high
abstraction level.

When the offered and/or requested services of an application being
integrated can be represented as an abstract interaction contribution, as in
[38], an integration solution can be modelled as a single abstract
interaction. The information mapping is specified as the distribution
constraints of the abstract interaction. Figure 8-12 depicts abstract
interaction order that models an integration solution between Blue’s OA and
Moon’s CRM and OM.

Figure 8-11
Annotated operation
execution por

228 CHAPTER 8 CASE STUDY: ENTERPRISE APPLICATION INTEGRATION

At an implementation level, the interaction synchronisation of abstract
interaction order must be preserved by an integration solution. This
interaction synchronisation specifies the causal dependency of Blue’s OA
and Moon’s CRM and OM on each other. An integration solution that
implements abstract interaction order will be more complex than the
mediator in Figure 8-9 because it must preserve the interaction
synchronisation of abstract interaction order. The mediator in Figure 8-9
does not specify the dependency of Moon’s CRM on Moon’s OM.

8.5 Evaluation

In this section, we evaluate our interaction concept and design
transformations to assess whether they serve their purposes well and can be
used in practice.

Interaction concept
We have shown that our interaction concept can be used in the integration
approach that is presented in Section 8.1.2. The interaction concept is used
to specify operation invocations at a low abstraction level, i.e., an
interaction models the sending of a message between two participants. To
facilitate the modelling of operation invocations, the shorthands for
operation calls and operation executions are used. The shorthands make the
interaction concept more usable in practice, because designers do not have
to specify the same composition of interactions to represent operation
invocations multiple times.

Figure 8-12
Integration solution as
an abstract interaction

 EVALUATION 229

ISDL2BPEL transformation tool
We have shown that a mediator PSM that is properly annotated with
WSDL/BPEL-specific information can be transformed to an executable
implementation. It generates a BPEL process from the mediator PSM in a
few seconds and, hence, it saves the development time and effort of an
integration solution. The ISDL2BPEL transformation tool can be used in
practice.

Chapter 9

9. Conclusions

This chapter presents the conclusions and contributions of this thesis and
suggests directions for further research. The chapter is organised as follows:
Section 9.1 presents the general conclusions of our work; Section 9.2
presents our main research contributions; and Section 9.3 suggests
directions for further research.

9.1 General conclusions

This thesis proposes a concept and transformations for designing
interactions in a service composition at related abstraction levels. The
concept and transformations are aimed at helping designers to bridge the
conceptual gap between the business and software domains. In this way, the
complexity of an interaction design can be managed adequately.

A service is the establishment of some valuable effect through the
interaction between a service user and service provider(s). In a service
composition, a number of services are composed to deliver a new service. A
service composition is specified as one or more interactions between a
service user and service provider(s).

Section 1.2.3 identifies three research questions regarding the use of
related abstraction levels in the development of a service composition. In
the following, we answer those questions by referring to the chapters in
which those questions are addressed and answered.

RQ1: What interaction design concept is suitable for modelling interactions at related
abstraction levels? Are available interaction design concepts suitable for this purpose?

In Chapter 2, we define a set of suitability requirements to assess
whether an interaction design concept is suitable for modelling interactions
at related abstraction levels. Such an interaction design concept should
allow a business analyst and application designer

232 CHAPTER 9 CONCLUSIONS

– to model an interaction between two or more participants,
– to define different views of different participants on the established

result,
– to specify the relation between different views of different participants,

and
– to specify participants’ requirements directly.
In addition, at an implementation level, an interaction design concept
should be able to model interaction mechanisms precisely.

We use these suitability requirements to analyse the interaction design
concepts that are used in a number of design methods for service
compositions. The analysis concludes that none of the analysed interaction
design concepts satisfies all the suitability requirements.

In Chapter 3, we define an interaction concept that satisfies these
requirements by enhancing the ISDL interaction concept. We show that
the interaction concept is suitable for modelling abstract interactions. In
Chapter 5, we show that the interaction concept is suitable for modelling
interaction mechanisms as concrete interaction structures and abstract
interactions.

RQ2: How to transform interaction designs between related abstraction levels? How to
assess the conformance between interaction designs at different abstraction levels?

In Chapter 4, we define two design transformations to support
interaction design at related abstraction levels, i.e., direct interaction
refinement and abstraction, as opposed to indirect interaction refinement
and abstraction [107]. Direct interaction design transformation preserves
the distribution of responsibility between participants. Indirect interaction
design transformation performs the transformation in the integrated
perspective, in which every interaction is modelled as an action. When an
interaction is modelled as an action, information about the distribution of
responsibility between participant disappears and, thus, cannot be
preserved during transformation.

To assess the conformance between interaction designs at related
abstraction levels, we define a set of conformance requirements and an
assessment method to check whether those conformance requirements are
satisfied. The interaction design transformations and conformance
assessment method reuse and extend the operational concepts and methods
for general behaviour transformations in ISDL.

RQ3: How to facilitate the development process of a service composition? How can the
MDA approach contribute to that process?

To facilitate the development process of a service composition, we
provide:
– patterns for interaction refinements.

 RESEARCH CONTRIBUTIONS 233

In Chapter 4, we identify four patterns for interaction refinement. Each
pattern indicates a possible way to refine an abstract interaction into a
concrete interaction structure. The patterns are interface
decomposition, new participants introduction, bilateral interactions
transformation, and intermediary introduction. We show that every
pattern can result in a concrete interaction structure that conforms to
the original abstract interaction.

– abstract representations of interaction mechanisms.
In Chapter 5, we represent the CORBA and Web Services interaction
mechanisms as abstract interactions. These representations allow a
business analyst and application designer to include the interaction
mechanisms in an abstract interaction design without having to deal with
the detailed behaviours of the interaction mechanisms. Following the
MDA approach, those representations also abstract from the details of
the technological platforms on which the interaction mechanisms are
implemented. This allows them to be implemented with different
supporting platforms.

– a transformation tool to transform an interaction design to an
executable implementation.
In Chapter 6, we develop a transformation tool to transform
automatically an interaction design to an executable implementation in
BPEL. The interaction design must comply with several modelling
restrictions and be annotated with WSDL/BPEL-specific information.
The use of modelling restrictions and annotations follow the MDA
transformation approach that makes use of patterns (i.e., recognisable
structures of elements) and markings (i.e., annotating a model with
information that is specific to the target platform) [90].

9.2 Research contributions

Our work contributes to the area of service composition design and model-
driven engineering. Specifically, it contributes to
– interaction design concepts,
– interaction design transformations,
– interaction mechanism representations, and
– model transformations.

Contributions to interaction design concepts
We enhance the ISDL interaction concept to make it suitable for modelling
interactions at related abstraction levels. Specifically, the enhanced

234 CHAPTER 9 CONCLUSIONS

interaction concept allows different participants to have different views on
the interaction result. Distribution constraints are defined to relate these
participants’ views. The enhanced interaction concept allows us to
represent a complex composition of interactions by a single interaction and
refine it.

The enhanced interaction concept is generic with regard to abstraction
levels and application domains. Although the interaction concept is
developed for ISDL, it can be (partly) adopted by other design languages. In
a broader scope, we contribute to the research toward concepts for
representing interactions at various stages in a design process, such as in [3,
24, 58, 72, 73, 115].

Contributions to interaction design transformation
We define interaction refinement and abstraction methods that preserve
the distribution of responsibility between participants. We define a set of
conformance requirements and an assessment method to check the
conformance between interaction designs at related abstraction levels. Also,
we identify four patterns for interaction refinement. In a broader scope, we
contribute to the research toward interaction refinement and abstraction,
such as in [6, 13, 27, 28, 119, 126].

Contributions to interaction mechanism representations
The use of design patterns that are concerned with interactions, e.g., in [11,
16, 46, 54, 70], have become common practice to describe interaction
structures that satisfy generic requirements in specific application domains.
We model the behaviours of interaction mechanisms as interaction
patterns. Further, we represent them as abstract interactions. These
abstract representations contribute to the research towards interaction
mechanism representations, such as in [30, 34, 68, 78, 115, 116].

Contributions to model transformations
Our transformation tool is developed as a composition of smaller
transformations. The purpose of transformation (de)composition, as
investigated in [5, 39, 67, 79], is to manage transformation complexity and
to allow reuse. To allow reuse, we define a language for defining an
intermediate model. This intermediate model documents the behavioural
patterns that are found in a source model.

We define a framework for evaluating and selecting options for data
manipulation in a service composition, based on the following criteria:
feasibility, efficiency, reusability, merging, and portability. The framework
defines the quality and quantity values for those criteria and a formula for
selecting an option.

 DIRECTIONS FOR FURTHER RESEARCH 235

9.3 Directions for further research

We suggest the following directions for further research.

Quality-of-service modelling
The ISDL behavioural concepts include, among others, time and
uncertainty attributes. Further investigation should aim at elaborating those
attributes for modelling the quality-of-service (QoS) of an interaction, such
as delay, throughput, and reliability. These qualities can be derived from a
service level agreement (SLA) between the participants. An abstract
interaction specifies the desired QoS and a concrete interaction structure
specifies how to deliver that QoS. Conversely, one should be able to
calculate the total QoS of a concrete interaction structure and represent it
in an abstract interaction. This investigation can extend the work in [107,
110].

Verification of interaction designs
Conformance assessment checks whether a concrete interaction structure
conforms to an abstract interaction. It does not check, for example, the
possibility of a deadlock during execution. Further investigation should aim
at the verification of a concrete interaction structure, e.g., for liveness,
reachability, or boundedness properties. The verification of those properties
can be done by using an available analysis language, such as Petri Nets. A
mapping from the ISDL behavioural concepts to an analysis language is
therefore necessary. Initial work [105] has been done on this mapping and
further investigation can extend that work.

Tool support for conformance assessment
The case studies in Chapter 7 and 8 indicate the need of tool support for
conformance assessment. Further investigation should aim at the
development of such tool support. The tool support should include (semi-)
automatic interaction abstraction and interaction design comparison. It
would facilitate a design process and encourage designers to use our
interaction design concept and transformations. This investigation can use
and extend the ISDL formal semantics [107].

Mapping other design languages to ISDL
The aforementioned tool support could serve as a generic tool supporting
conformance assessment, as illustrated in Figure 9-1. This would allow a
business analyst and application designer to develop interaction designs
using their preferred design languages, e.g., L1 and L2 in the figure, and
then to check the conformance between the designs using the tool support.
In addition, the ISDL2BPEL transformation tool could be used to

236 CHAPTER 9 CONCLUSIONS

transform the interaction design, which is obtained from the translation, to
an executable implementation. In this way, the ISDL behavioural concepts
serve as a common semantic meta-model that relates design languages,
analysis languages, and implementation languages [113]. Further
investigation should aim at mapping the behavioural concepts of other
design languages to the ISDL behavioural concepts.

Figure 9-1
Conformance
assessment of
interaction designs that
use different design
languages

Appendix A

A. Conformance assessments in case
study 1

This appendix provides the conformance assessment of the refinements that
are done in case study 1 (travel reservation application).

A.1 Design process 1

Four refinements are done in this design process. Refinements 1 and 3 are
interaction refinements. Refinement 2 and 4 are causality refinements that
are followed by the refinement of inserted actions into interactions.

A.1.1 Refinement 1

Abstract interaction book in Figure 7-2 is refined into the concrete
interaction structure in Figure 7-4. Table A-1 depicts the correspondence
relation between them.

Step 1
The participants and attributes of the concrete interaction structure that are
listed in Table A-1 should be preserved.

Step 2
The only final interaction cp depends on context actions a and c via
interactions pp, sh, sf, and sp. The concrete interaction structure provides
synchronisation as provided by abstract interaction book. Conformance
requirement IR4 is satisfied.

Step 3
The concrete interaction contribution structure in participant Customer is
abstracted into abstract interaction contribution bC that has the preserved

238 APPENDIX A CONFORMANCE ASSESSMENTS IN CASE STUDY 1

attributes of concrete participant Customer in Table A-1. The resulted
abstraction is depicted in Figure A-1.

 Abstract interaction Concrete interaction structure

Customer Customer Participants
TravelAgent TravelAgent
bC.name ppC.name
bC.departure spC.departure
bC.destination spC.destination
bC.dateStart spC.dateStart
bC.dateEnd spC.dateEnd
bC.flightOut sfC.flightOut
bC.flightIn sfC.flightIn
bC.hotel shC.hotel
bC.price ppC.price
bT.name ppT.name
bT.departure spT.departure
bT.destination spT.destination
bT.dateStart spT.dateStart
bT.dateEnd spT.dateEnd
bT.flightOut sfT.flightOut
bT.flightIn sfT.flightIn
bT.hotel shT.hotel

Attributes

bT.price ppT.price
Occurrences book cb

Customer’ = {

a → bC (name: String, departure: String, destination: String, dateStart: Date, dateEnd: Date,
flightOut: Flight, flightIn: Flight, hotel: Hotel, price: double)

[getDeparture(flightOut) = getDestination(flightIn) = departure,
getDestination(flightOut) = getDeparture(flightIn) = destination,
getLocation(hotel) = destination,
getDate(flightOut) = getDateIn(hotel) = dateStart,
getDate(flightIn) = getDateOut(hotel) = dateEnd],

bC → b

}

The concrete interaction contribution structure in participant

TravelAgent is abstracted into abstract interaction contribution bT that has the
preserved attributes of concrete participant TravelAgent in Table A-1. The
resulted abstraction is depicted in Figure A-2.

Table A-1
Correspondence relation
in refinement 1

Figure A-1
The abstraction of
concrete participant
Customer

 DESIGN PROCESS 1 239

TravelAgent’ = {

c → bT (name: String, departure: String, destination: String, dateStart: Date, dateEnd: Date,
flightOut: Flight, flightIn: Flight, hotel: Hotel, price: double)

[flightOut in listFlights(departure, destination, dateStart),
flightIn in listFlights(destination, departure, dateEnd),
hotel in listHotels(destination, dateStart, dateEnd),
price = getPrice(flightOut) + getPrice(flightIn) + getPrice(hotel) + fee],

bT → d

}

Step 4
The interactions in Figure 7-4 are defined as remote interactions. Their
implicit distribution constraints determine the distribution constraints of
abstract interaction book’ between abstract participants Customer’ and
TravelAgent’, as depicted in Figure A-3.

book’ (bC: Customer’.bC, bT: TravelAgent’.bT) [

bC.name = bT.name,
bC.departure = bT. departure,
bC.destination = bT.destination,
bC.dateStart = bT.dateStart,
bC.dateEnd = bT.dateEnd,
bC.flightOut = bT.flightOut,
bC.flightIn = bT.flightIn,
bC.hotel = bT.hotel,
bC.price = bT.price]

Alternatively, this abstract interaction can be defined as a remote

interaction as depicted in Figure A-4.

book’ (bC: Customer’.bC, bT: TravelAgent’.bT) [remote]

Abstract interaction book’ has an equivalence correctness relation with

the original abstract interaction book. The concrete interaction structure in
Figure 7-4 conforms to abstract interaction book in Figure 7-2.

A.1.2 Refinement 2

The orchestration in Figure 7-6 is obtained from the refinements of the
causality relations between the interaction contributions of abstract
participant TravelAgent in Figure 7-4, that are followed by the refinement of

Figure A-2
The abstraction of
concrete participant
TravelAgent

Figure A-3
Abstract interaction
book' between abstract
participants Customer'
and TravelAgent'

Figure A-4
Abstract interaction
book' as a remote
interaction

240 APPENDIX A CONFORMANCE ASSESSMENTS IN CASE STUDY 1

the inserted actions into interactions. An inserted action that is refined into
an interaction is called an inserted interaction. The inserted interactions are
– interaction gf, which is inserted between interaction contributions spT

and sfT;
– interactions hf and gh, which are inserted between interaction

contributions sfT and shT; and
– interactions bh, bf, and ch, which are inserted between interaction

contributions ppT, pbT, and cpT.

To abstract from an inserted interaction, we define the following steps.

1. Abstract an inserted interaction into an integrated interaction and model
it as an action, i.e., an inserted action.

2. Abstract from the inserted action.

Interaction gf
Inserted interaction gf is modelled as inserted action gf. This inserted action
is depicted in Figure A-5 and textually in Figure A-6.

c → spT (departure: String, destination: String, dateStart: Date, dateEnd: Date),

spT → gf (departure: String, destination: String, dateOut: Date, dateIn: Date, flightsOut: Flight[],
flightsIn: Flight[])

[departure = spT.departure,
destination = spT.destination,
dateOut = spT.dateStart,
dateIn = spT.dateEnd,
flightsOut = listFlights(departure, destination, dateOut),
flightsIn = listFlights(destination, departure, dateIn)],

gf → sfT (flightOut: Flight, flightIn: Flight)
[flightOut in gf.flightsOut,
flightIn in gf.flightsIn]

The causality relations in Figure A-5 is abstracted from inserted action

gf. This results in the causality relations that are depicted in Figure A-7 and
textually in Figure A-8.

Figure A-5
Interaction gf as an
inserted action

Figure A-6
Textual expression of
Figure A-5

 DESIGN PROCESS 1 241

c → spT (departure: String, destination: String, dateStart: Date, dateEnd: Date),

spT → sfT (flightOut: Flight, flightIn: Flight)
[flightOut in listFlights(spT.departure, spT.destination, spT.dateStart),
flightIn in listFlights(spT.destination, spT.departure, spT.dateEnd)]

The obtained causality relation between spT and sfT has an equivalence

correctness relation with the original causality relation.

Interactions hf and gh
Inserted interactions hf and gh are modelled as inserted actions hf and gh.
These inserted actions are depicted in Figure A-9 and textually in Figure
A-10.

spT → sfT (flightOut: Flight, flightIn: Flight)
[flightOut in listFlights(spT.departure, spT.destination, spT.dateStart),
flightIn in listFlights(spT.destination, spT.departure, spT.dateEnd)]

sfT → hf (flightOut: Flight, flightIn: Flight, expiryDate: Date)

[flightOut = sfT.flightOut,
flightIn = sfT.flightIn,
expiryDate = getExpiryDate(currentDate())],

hf → gh (location: String, dateIn: Date, dateOut: Date, hotels: Hotel[])

[location = spT.destination,
dateIn = spT.dateStart,
dateOut = spT.dateEnd,
hotels = listHotels(location, dateIn, dateOut)],

gh → shT (hotel: Hotel)

[hotel in gh.hotels]

Figure A-7
Abstract from inserted
action gf

Figure A-8
Textual expression of
Figure A-7

Figure A-9
Interactions hf and gh as
inserted actions

Figure A-10
Textual expression of
Figure A-9

242 APPENDIX A CONFORMANCE ASSESSMENTS IN CASE STUDY 1

The causality relations in Figure A-9 are abstracted from inserted
actions hf. This results in the causality relations that are depicted in Figure
A-11 and textually in Figure A-12.

spT → sfT (flightOut: Flight, flightIn: Flight)
[flightOut in listFlights(spT.departure, spT.destination, spT.dateStart),
flightIn in listFlights(spT.destination, spT.departure, spT.dateEnd)]

sfT → gh (location: String, dateIn: Date, dateOut: Date, hotels: Hotel[])

[location = spT.destination,
dateIn = spT.dateStart,
dateOut = spT.dateEnd,
hotels = listHotels(location, dateIn, dateOut)],

gh → shT (hotel: Hotel)

[hotel in gh.hotels]

The causality relations in Figure A-11 are abstracted from inserted

action gh. This results in the causality relations that are depicted in Figure
A-13 and textually in Figure A-14.

spT → sfT (flightOut: Flight, flightIn: Flight)
[flightOut in listFlights(spT.departure, spT.destination, spT.dateStart),
flightIn in listFlights(spT.destination, spT.departure, spT.dateEnd)]

sfT → shT (hotel: Hotel)

[hotel in listHotels(spT.destination, spT.dateStart, spT.dateEnd)]

Figure A-11
Abstract from inserted
action hf

Figure A-12
Textual expression of
Figure A-11

Figure A-13
Abstract from inserted
action gh

Figure A-14
Textual expression of
Figure A-13

 DESIGN PROCESS 1 243

The obtained causality relation between sfT and shT has an equivalence
correctness relation with the original causality relation.

Interactions bh, bf, and ch
Inserted interactions bh, bf, and ch are modelled as inserted actions bh, bf,
and ch. These inserted actions are depicted in Figure A-15 and textually in
Figure A-16.

shT → ppT (name: String, price: double)
[price = getPrice(sfT.flightOut) + getPrice(sfT.flightIn) + getPrice(shT.hotel) + fee],

ppT → bh (name: String, hotel: Hotel, price: double, code: long)

[name = ppT.name,
hotel = shT.hotel
price = getPrice(hotel),
code = getCode(name, hotel)],

bh [bh.code ≥ 0] → bf (name: String, flightOut: flight, flightIn: Flight, price: double, code: long)

[name = ppT.name,
flightOut = sfT.flightOut,
flightIn = sfT.flightIn,
price = getPrice(flightOut) + getPrice(flightIn),
code ∈ {getCode(name, flightOut, flightIn), -1}],

bf [bf.code < 0] ∧ bh [bh.code ≥ 0] → ch (code: long)

[code = bh.code],

bh [bh.code < 0] ∨ ch → pbT (payback: double)

[payback = ppT.price],

bf [bf.code ≥ 0] → cpT (code: long[2])

[code[0] = bf.code,
 code[1] = bh.code]

Figure A-15
Interactions bh, bf, and
ch as an inserted actions

Figure A-16
Textual expression of
Figure A-15

244 APPENDIX A CONFORMANCE ASSESSMENTS IN CASE STUDY 1

The causality relations in Figure A-15 are abstracted from inserted

action bf. This results in the causality relations that are depicted in Figure
A-17 and textually in Figure A-18. The exclusive choice between cpT and ch
that is implied by the positive and negative results of action bf are modelled
explicitly.

ppT

shT

succH

cpT

pbT

succH

!succH

bh

ch

shT → ppT (name: String, price: double)
[price = getPrice(sfT.flightOut) + getPrice(sfT.flightIn) + getPrice(shT.hotel) + fee],

ppT → bh (name: String, hotel: Hotel, price: double, code: long)

[name = ppT.name,
hotel = shT.hotel
price = getPrice(hotel),
code = getCode(name, hotel)],

bh [bh.code ≥ 0] ∧ ¬cpT → ch (code: long)

[code = bh.code],

bh [bh.code < 0] ∨ ch → pbT (payback: double)

[payback = ppT.price],

bh [bh.code ≥ 0] ∧ ¬ch → cpT (code: long[2])

[code[0] = getCode(ppT.name, sfT.flightOut, sfT.flightIn),
code[1] = bh.code],

The causality relations in Figure A-17 are abstracted from inserted

action ch. This results in the causality relations that are depicted in Figure
A-19 and textually in Figure A-20.

Figure A-17
Abstract from inserted
action bf

Figure A-18
Textual expression of
Figure A-17

 DESIGN PROCESS 1 245

shT → ppT (name: String, price: double)
[price = getPrice(sfT.flightOut) + getPrice(sfT.flightIn) + getPrice(shT.hotel) + fee],

ppT → bh (name: String, hotel: Hotel, price: double, code: long)

[name = ppT.name,
hotel = shT.hotel
price = getPrice(hotel),
code = getCode(name, hotel)],

bh ∧ ¬cpT → pbT (payback: double)

[payback = ppT.price],

bh [bh.code ≥ 0] ∧ ¬pbT → cpT (code: long[2])

[code[0] = getCode(ppT.name, sfT.flightOut, sfT.flightIn),
code[1] = bh.code],

The causality relations in Figure A-19 are abstracted from inserted

actions bh. This results in causality relations that are depicted in Figure
A-21 and textually in Figure A-22.

shT → ppT (name: String, price: double)
[price = getPrice(sfT.flightOut) + getPrice(sfT.flightIn) + getPrice(shT.hotel) + fee],

ppT ∧ ¬cpT → pbT (payback: double)

[payback = ppT.price],

ppT ∧ ¬pbT → cpT (code: long[2])

[code[0] = getCode(ppT.name, sfT.flightOut, sfT.flightIn),

Figure A-19
Abstract from inserted
action ch

Figure A-20
Textual expression of
Figure A-19

Figure A-21
Abstract from inserted
action bh

Figure A-22
Textual expression of
Figure A-21

246 APPENDIX A CONFORMANCE ASSESSMENTS IN CASE STUDY 1

code[1] = getCode(ppT.name, shT.hotel],

The obtained causality relation between ppT, pbT, and cpT has an

equivalence correctness relation with the original causality relation.

A.1.3 Refinement 3

Abstract interaction bh in Figure 7-6 is refined into the concrete interaction
structure in Figure 7-8. Table A-2 depicts the correspondence relation
between them.

 Abstract interaction Concrete interaction structure

TACoordinator TACoordinator Participants
HotelRS HotelRS
bhT.name rhT.name
bhT.hotel rhT.hotel
bhT.price phT.price
bhT.code ohT.code
bhH.name rhH.name
bhH.hotel rhH.hotel
bhH.price phH.price

Attributes

bhH.code ohH.code
Occurrences bh confirm

Step 1
The participants and attributes of the concrete interaction structure that are
listed in Table A-2 should be preserved.

Step 2
The only final interaction confirm depends on context interaction
contributions ppT and ghH via interactions request and payment. The concrete
interaction structure provides synchronisation as provided by abstract
interaction bh. Conformance requirement IR4 is satisfied.

Step 3
The concrete interaction contribution structure in participant TACoordinator
is abstracted into abstract interaction contribution bhT that has the
preserved attributes of the concrete participant TACoordinator in Table A-2.
The resulted abstraction is depicted in Figure A-23.

Table A-2
Correspondence relation
in refinement 3

 DESIGN PROCESS 1 247

TACoordinator’ = {
…
ppT → bhT (name: String, hotel: Hotel, price: double, code: long)

[name = ppT.name,
hotel = shT.hotel
price = getPrice(hotel)],

bhT [bhT.code ≥ 0] → bfT (…)
bhT [bhA.code < 0] → pbA (…)
…

}

The concrete interaction contribution structure in participant HotelRS is

abstracted into abstract interaction contribution bhH that has the preserved
attributes of the concrete participant HotelRS in Table A-2. The resulted
abstraction is depicted in Figure A-24.

HotelRS’ = {

…
ghH → bhH (name: String, hotel: Hotel, price: double, code: long)

[hotel in ghH.hotels,
price = getPrice(hotel),
code = getCode(name, hotel)],

bhH [bhH.code ≥ 0] → chH (…)

}

Step 4
The interactions in Figure 7-8 are defined as remote interactions. Their
implicit distribution constraints determine the distribution constraints of
interaction bh’ between abstract participants TACoordinator’ and HotelRS’, as
depicted in Figure A-25.

bh’ (bhT: TACoordinator’.bhT, bhH: HotelRS’.bhH) [

bhT.name = bhH.name,
bhT.hotel = bhH.hotel,
bhT.price = bhH.price,
bhT.code = bhH.code]

Alternatively, this abstract interaction can be defined as a remote

interaction as depicted in Figure A-26.

Figure A-23
The abstraction of
concrete participant
TACoordinator

Figure A-24
The abstraction of
concrete participant
HotelRS

Figure A-25
Abstract interaction bh’
between abstract
participants
TACoordinator’ and
HotelRS’

248 APPENDIX A CONFORMANCE ASSESSMENTS IN CASE STUDY 1

bh’ (bhT: TACoordinator’.bhT, bhH: HotelRS’.bhH) [remote]

Abstract interaction bh’ has an equivalence correctness relation with the

original abstract interaction bh. The concrete interaction structure in Figure
7-8 conforms to abstract interaction bh in Figure 7-6.

A.1.4 Refinement 4

Interaction auth in Figure 7-10 is inserted in the causality relation between
interaction contributions rhT and phT of participant TACoordinator in Figure
7-8. We follow the steps defined in Section A.1.2 to abstract from this
inserted interaction.

Inserted interaction auth is modelled as inserted action auth. This
inserted action is depicted in Figure A-27 and textually in Figure A-28.

ppT → rhT (name: String, hotel: Hotel)
[name = ppT.name,
hotel = shT.hotel],

rhT → auth (name: String, ccNo: String, authID: long)
[name = ppT.name,
ccNo = ppT.ccNo,
authID = authorise(name, ccNo)],

auth → phT (ccNo: String, authID: long, price: double)
[ccNo = auT.ccNo,
authID = auT.authID,
price = getPrice(rhT.hotel)]

The causality relations in Figure A-27 are abstracted from inserted

action auth. This results in the causality relations that are depicted in Figure
A-29 and textually in Figure A-30.

Figure A-26
Abstract interaction bh’
as a remote interaction

Figure A-27
Interaction auth as an
inserted action

Figure A-28
Textual expression of
Figure A-27

Figure A-29
Abstract from inserted
action auth

 DESIGN PROCESS 2 249

ppT → rhT (name: String, hotel: Hotel)
[name = ppT.name,
hotel = shT.hotel],

rhT → phT (price: double)
[price = getPrice(rhT.hotel)]

The obtained causality relation between rhT and phT has an equivalence

correctness relation with the original causality relation.

A.2 Design process 2

Interaction book in Figure 7-12 is refined into the concrete interaction
structure in Figure 7-14. Table A-3 depicts the correspondence relation
between them.

Step 1
The participants and attributes of the concrete interaction structure that are
listed in Table A-3 should be preserved.

Step 2
This step has been presented in Section 7.3.3. It concludes that
conformance requirement IR4 is satisfied.

Step 3
The concrete interaction contribution structure in participant Customer is
abstracted into abstract interaction contribution bC that has the preserved
attributes of concrete participant Customer in Table A-3. The resulted
abstraction is depicted in Figure A-31.

The concrete interaction contribution structure in participant FlightRS is
abstracted into abstract interaction contribution bF that has the preserved
attributes of concrete participant FlightRS in Table A-3. The resulted
abstraction is depicted in Figure A-32.

The concrete interaction contribution structure in participant HotelRS is
abstracted into abstract interaction contribution bH that has the preserved
attributes of concrete participant HotelRS in Table A-3. The resulted
abstraction is depicted in Figure A-33.

Figure A-30
Textual expression of
Figure A-29

250 APPENDIX A CONFORMANCE ASSESSMENTS IN CASE STUDY 1

 Abstract interaction Concrete interaction structure

Customer Customer
FlightRS FlightRS

Participants

HotelRS HotelRS
bC.name ppC.name
bC.departure spC.departure
bC.destination spC.destination
bC.dateStart spC.dateStart
bC.dateEnd spC.dateEnd
bC.flightOut sfC.flightOut
bC.flightIn sfC.flightIn
bC.hotel shC.hotel
bC.price ppC.price
bF.name bfF.name
bF.departure gfF.departure
bF.destination gfF.destination
bF.dateOut gfF.dateOut
bF.dateIn gfF.dateIn
bF.flightOut bfF.flightOut
bF.flightIn bfF.flightIn
bF.price bfF.price
bH.name bhH.name
bH.location ghH.location
bH.dateIn ghH.dateIn
bH.dateOut ghH.dateOut
bH.hotel bhH.hotel

Attributes

bH.price bhH.price
Occurrences book cp ∧ bf ∧ bh

Customer’ = {

a → bC (name: String, departure: String, destination: String, dateStart: Date, dateEnd: Date,
flightOut: Flight, flightIn: Flight, hotel: Hotel, price: double)

[getDeparture(flightOut) = getDestination(flightIn) = departure,
getDestination(flightOut) = getDeparture(flightIn) = destination,
getLocation(hotel) = destination,
getDate(flightOut) = getDateIn(hotel) = dateStart,
getDate(flightIn) = getDateOut(hotel) = dateEnd],

bC → b

}

Table A-3
Correspondence relation
in the refinement in
design process 2

Figure A-31
The abstraction of
concrete participant
Customer

 DESIGN PROCESS 2 251

FlightRS’ = {
e → bF (name: String, departure: String, destination: String, dateOut: Date, dateIn: Date,
flightOut: Flight, flightIn: Flight, price: double)

[flightOut in listFlights(departure, destination, dateOut),
flightIn in listFlights(destination, departure, dateIn),
price = getPrice(flightOut) + getPrice(flightIn)]

bF → f

}

HotelRS’ = {

g → bF (name: String, location: String, dateIn: Date, dateOut: Date, hotel: Hotel, price:
double)

[hotel in listHotels(location, dateIn, dateOut),
price = getPrice(hotel)]

bF → h

}

Step 4
The interactions in Figure 7-14 are defined as remote interactions. Their
implicit distribution constraints must be taken into account in the
distribution constraints of abstract interaction book’ between abstract
participants Customer’, FlightRS’, and HotelRS’ as depicted in Figure A-34.

book’ (bC: Customer’.bC, bF: FlightRS’.bF, bH: HotelRS’.bH) [

bC.name = bF.name = bH.name,
bC.departure = bF.departure,
bC.destination = bF.destination = bH.location,
bC.dateStart = bF.dateOut = bH.dateIn,
bC.dateEnd = bF.dateIn = bH.dateOut,
bC.flightOut = bF.flightOut,
bC.flightIn = bF.flightIn,
bC.hotel = bH.hotel,
bC.price = bF.price + bH.price + fee]

The calculation to determine those contribution constraints is shown in

Figure A-35. Constraints that are preceded with the symbol ‘ ’ are the
constraints of the abstract interaction. These constraints are obtained by
replacing the attributes at the concrete level with the corresponding
attributes at the abstract level.

Figure A-32
The abstraction of
concrete participant
FlightRS

Figure A-33
The abstraction of
concrete participant
HotelRS

Figure A-34
Abstract interaction
book’ between abstract
participants Customer’,
FlightRS’, and HotelRS’

252 APPENDIX A CONFORMANCE ASSESSMENTS IN CASE STUDY 1

ppC.name = ppT.name = bhT.name = bhH.name = bfT.name = bfF.name
ppC.name = bfF.name = bhH.name

 bC.name = bF.name = bH.name

spC.departure = spT.departure = gfT.departure = gfF.departure
spC.departure = gfF.departure

 bC.departure = bF.departure

spC.destination = spT.destination = gfT.destination = gfF.destination = ghT.location =
ghH.location
spC.destination = gfF.destination = ghH.location

 bC.destination = bF.destination = bH.location

spC.dateStart = spT.dateStart = gfT.dateOut = gfF.dateOut = ghT.dateIn = ghH.dateIn
spC.dateStart = gfF.dateOut = ghH.dateIn

 bC.dateStart = bF.dateOut = bH.dateIn

spC.dateEnd = spT.dateEnd = gfT.dateIn = gfF.dateIn = ghT.dateOut = ghH.dateOut
spC.dateEnd = gfF.dateIn = ghH.dateOut

 bC.dateEnd = bF.dateIn = bH.dateOut

sfC.flightOut = sfT.flightOut = hfT.flightOut = bfT.flightOut = bfF.flightOut
sfC.flightOut = bfF.flightOut

 bC.flightOut = bF.flightOut

sfC.flightIn = sfT.flightIn = hfT.flightIn = bfT.flightIn = bfF.flightIn
sfC.flightIn = bfF.flightIn

 bC.flightIn = bF.flightIn

shC.hotel = shT.hotel = bhT.hotel = bhH.hotel
shC.hotel = bhH.hotel

 bC.hotel = bH.hotel

ppC.price = ppT.price = getPrice(sfT.flightOut) + getPrice(sfT.flightIn) + getPrice(shT.hotel) +
fee
ppC.price = bfT.price + bhT.price + fee
ppC.price = bfF.price + bhH.price + fee

 bC.price = bF.price + bH.price + fee

Abstract interaction book’ has an equivalence correctness relation with

the original abstract interaction book. The concrete interaction structure in
Figure 7-14 conforms to abstract interaction book in Figure 7-12.

Figure A-35
Calculation to determine
the distribution
constraints of abstract
interaction book’

A. References

1. Active Endpoints Inc., ActiveBPEL Engine 2.0, http://www.active-

endpoints.com/active-bpel-engine-overview.htm
2. Active Endpoints Inc., ActiveVOS, http://www. activevos.com
3. R. Allen and D. Garlan, “A Formal Basis for Architectural

Connection”, ACM Transactions on Software Engineering and Methodology,
vol. 6, no.3, ACM Press, 1997, pp. 213-249.

4. J.P. Almeida, R. Dijkman, M. van Sinderen, and L. Ferreira Pires,
“On the Notion of Abstract Platform in MDA Development”,
Proceedings of the 8th IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2004), IEEE Computer Society Press,
2004, pp. 253-263.

5. J.P. Almeida, L. Ferreira Pires, and M. van Sinderen, “Cost and
Benefits of Multiple Levels of Models in MDA Development”,
Proceedings of the 2nd European Workshop on Model Driven Architecture with
an Emphasis on Methodologies and Transformations, 2004, pp. 12-20.

6. J.P.A. Almeida, R. Dijkman, L. Ferreira Pires, D. Quartel, and M.
van Sinderen, “Model Driven Design, Refinement and
Transformation of Abstract Interactions”, International Journal of
Cooperative Information Systems, vol. 15, no. 4, World Scientific, 2006,
pp. 599-632.

7. G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services.
Concepts, Architectures and Applications, Springer, 2004.

8. P.A. Amaya Barbosa, C.F. Gonzalez Contreras, and J.M. Murillo
Rodriguez, “MDA and Separation of Aspects: An Approach based on
Multiple Views and Subject Oriented Design”, Proceedings of the 6th
International Workshop on Aspect Oriented Modelling, 2005.

9. J. Amsden, T. Gardner, C. Griffin, and S. Iyengar, Draft UML 1.4
Profile, for Automated Business Processes with a Mapping to BPEL 1.0,
version 1.1, IBM, June 2003.

10. G.R. Andrews and F.B. Schneider, “Concepts and Notations for
Concurrent Programming”, ACM Computing Survey, vol. 15, no. 1,
ACM Press, 1983, pp. 3-43.

254 REFERENCES

11. Y. Aridor and D.B. Lange, “Agent Design Patterns: Elements of
Agent Application Design”, Proceedings of the 2nd International
Conference on Autonomous Agents, ACM Press, 1998, pp. 108-115.

12. C. Atkinson and T. Kühne, “Aspect-Oriented Development with
Stratified Frameworks”, IEEE Software, vol. 20, no. 1, IEEE
Computer Society Press, 2003, pp. 81-89.

13. C. Atkinson, T. Kühne, and C. Bunse, “Dimensions of Component-
Based Development”, Proceedings of the Workshop on Object-Oriented
Technology, Lecture Notes in Computer Science, vol. 1743, Springer,
1999, pp. 185-186.

14. K. Baina, B. Benatallah, F. Casati, and F. Toumani, “Model-Driven
Web Service Development”, Proceedings of the 16th International
Conference of Advanced Information Systems Engineering (CAiSE’04),
Lecture Notes in Computer Science, vol. 3084, Springer, 2004, pp.
290-306.

15. L. Baresi, R. Heckel, S. Thöne, and D. Varró, “Modeling and
Validation of Service-Oriented Architectures: Application vs. Style”,
Proceedings of the 4th joint meeting of the European Software Engineering
Conference and ACM SIGSOFT Symposium on the Foundation of Software
Engineering (ESEC/FSE 2003), ACM SIGSOFT Software Engineering
Notes, vol. 28, no. 5, ACM Press, 2003, pp. 68-77.

16. A. Barros, M. Dumas, and A. ter Hofstede, “Service Interaction
Patterns”, Proceedings of the 3rd International Conference on Business
Process Management (BPM 2005), Lecture Notes in Computer Science,
vol. 3649, Springer, 2005, pp. 302-318.

17. G. Baster, P. Konana, and J.E. Scott, “Business Components: A Case
Study of Bankers Trust Australia Limited”, Communication of the ACM,
vol. 44, no. 5, ACM, 2001, pp. 92-98.

18. BEA Systems Inc., WS-Callback Protocol (WS-Callback), version 0.91,
26 February 2003.

19. BEA Systems Inc. and IBM Corp., BPELJ: BPEL for Java, March 2004.
20. BEA Systems Inc., IBM Corp., Microsoft Corp., SAP AG, and Siebel

Systems Inc., Business Process Execution Language for Web Services, version
1.1, 5 May 2003.

21. B. Benatallah, R.M. Dijkman, M. Dumas, and Z. Maamar, “Service
Composition: Concepts, Techniques, Tools and Trends”, Z.
Stojanovic and A. Dahanayake (eds.), Service-Oriented Software System
Engineering: Challenges and Practices, Idea Group Inc., 2005, pp.48-66.

22. J. Bezivin, S. Hammoudi, D. Lopes, and F. Jouault, “Applying MDA
Approach to B2B Applications: A Road Map”, Proceedings of the
Workshop on Model Driven Development (WMDD2004), Lecture Notes in
Computer Science, vol. 3344, Springer, 2004, pp. 148-157.

 REFERENCES 255

23. J. Bezivin, S. Hammoudi, D. Lopes, and F. Jouault, “Applying MDA
Approach for Web Service Platform”, Proceedings of the 8th IEEE
International Enterprise Distributed Object Computing Conference (EDOC
2004), IEEE Computer Society Press, 2004, pp. 58-70.

24. T. Bolognesi and E. Brinksma, “Introduction to the ISO
Specification Language LOTOS”, Computer Networks and ISDN Systems,
vol. 14, no. 1, Elsevier, 1987, pp. 25-59.

25. B. Bordbar and A. Staikopoulos, “On Behavioural Model
Transformation in Web Services”, Proceedings of the 5th International
Workshop on Conceptual Modelling Approaches for e-Business (eCOMO
2004), Lecture Notes on Computer Science, vol. 3289, Springer,
2005, pp. 67-678.

26. S. Brahe, “BPM on Top of SOA: Experiences from Financial
Industry”, Proceedings of the 5th International Conference on Business
Process Management (BPM 2007), Lecture Notes on Computer
Science, vol. 4714, Springer, 2007, pp. 96-111.

27. M. Broy, “Compositional Refinement of Interactive Systems”, Journal
of the ACM, vol. 44, no. 6, ACM Press, 1997, pp. 850-891.

28. M.V. Cengarle and A. Knapp, “UML 2. 0 Interactions: Semantics
and Refinement,” Proceedings of the 3rd International Workshop Critical
Systems Development with UML (CSDUML ’04), 2004, pp. 85-99.

29. N. Chapin and S.P. Denniston, “Characteristics of a Structured
Program”, ACM SIGPLAN Notices, vol. 13, no. 5, ACM Press, 1978,
pp. 36-45.

30. T.R. Dean and J.R. Cordy, “A Syntactic Theory of Software
Architecture”, IEEE Transaction on Software Engineering, vol. 21, no. 4,
IEEE Computer Society Press, 1995, pp. 302-313.

31. R. Dijkman, Consistency in Multi-Viewpoint Architectural Design, Ph.D.
thesis, University of Twente, The Netherlands, 2006.

32. R. Dijkman, Choreography-Based Design of Business Collaborations, BETA
Working Paper WP-181, Eindhoven University of Technology, The
Netherlands, 2006.

33. R. Dijkman and M. Dumas, “Service-Oriented Design: a Multi-
Viewpoint Approach”, International Journal of Cooperative Information
Systems, vol. 13, no. 4, World Scientific, 2004, pp. 337-368.

34. R. Dijkman, T. Dirgahayu, and D.A.C. Quartel, “Towards Advanced
Interaction Design Concepts”, Proceedings of the 10th IEEE
International EDOC Enterprise Computing Conference (EDOC 2006), IEEE
Computer Society Press, 2006, pp. 331-344.

35. T. Dirgahayu, Model Driven Engineering of Web Service Compositions: A
Transformation from ISDL to BPEL, M.Sc. Thesis, University of Twente,
The Netherlands, 2005.

256 REFERENCES

36. T. Dirgahayu, D. Quartel, and M. van Sinderen, “”Development of
Transformations from Business Process Models to Implementation
by Reuse”, Proceedings of the 3rd International Workshop on Model-Driven
Enterprise Information System (MDEIS 2007), INSTICC Press, 2007,
pp. 41-50.

37. T. Dirgahayu, D. Quartel, and M. van Sinderen, “An Abstract
Interaction Concept for Designing Interaction Behaviour of Service
Compositions”, Proceedings of the 4th International Conference on
Interoperability for Enterprise Software and Applications (I-ESA’08),
Enterprise Interoperability III, Springer, 2008, pp. 261-273.

38. T. Dirgahayu, D. Quartel, and M. van Sinderen, “Designing
Interaction Behaviour of Service-Oriented Enterprise Application
Integrations”, Proceedings of the 2008 ACM Symposium of Applied
Computing (SAC 2008), ACM, pp. 1048-1054.

39. F. Drewes, P. Knirsch, H.-J. Kreowski, and S. Kuske, “Graph
Transformation Modules and Their Composition”, Proceedings of
International Workshop on Applications of Graph Transformations with
Industrial Relevance (AGTIVE’99), Lecture Notes in Computer Science,
vol. 1779, Springer, 2000, pp. 111-119.

40. Eclipse Foundation, Eclipse Modeling Framework Project (EMF), http://
www. eclipse.org/modeling/emf/

41. C. Emig, J. Weisser, and S. Abeck, “Development of SOA-Based
Software Systems – an Evolutionary Programming Approach”,
Proceedings of Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services
(AICT-ICIW’06), 2006, pp. 182-187.

42. N. Erasala, D.C. Yen, and T.M. Rajkumar, “Enterprise Application
Integration in the Electronic Commerce World”, Computer Standards
and Interfaces, vol 25, no. 2, Elsevier, 2003, pp. 69-82.

43. A. Farias and M. Sudholt, “On Components with Explicit Protocols
Satisfying a Notion of Correctness by Construction”, Proceedings of
OTM 2002 Confederated International Conferences: CoopIS, DOA, and
ODBASE, Lecture Notes in Computer Science, vol. 2519, Springer,
2002, pp. 995-1012.

44. L. Ferreira Pires, Architectural Notes: a Framework for Distributed Systems
Development, Ph.D. thesis, University of Twente, The Netherlands,
1994.

45. R. Fehling, “A Concept of Hierarchical Petri Nets with Building
Blocks”, Proceedings of the 12th International Conference on Applications
and Theory of Petri Nets, Lecture Notes in Computer Science, vol. 674,
Springer, 1993, pp. 148-168.

 REFERENCES 257

46. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley
Professional, 1995.

47. J. Gray and A. Reuter, Transaction Processing Concepts and Techniques,
Morgan Kaufmann Publisher, 1993.

48. R. Grønmo, D. Skogan, I. Solheim, and J. Oldevik, “Model-driven
Web Services Development”, Proceedings of 2004 IEEE International
Conference on e-Technology, e-Commerce and e-Service (EEE’04), 2004, pp.
42-45.

49. J. Grudin, “Interactive Systems: Bridging the Gaps between
Developers and Users”, Computer, vol. 24, no. 4, IEEE Computer
Society Press, 1991, pp. 59-69.

50. S. Hallsteinsen and M. Paci (eds.), Experiences in Software Evolution and
Reuse. Twelve Real World Projects, Springer, 1997.

51. R. Hamadi and B. Benatallah, “A Petri Net-Based Model for Web
Service Composition”, Proceedings of the 14th Australasian Database
Conference (ADC 2003), Australian Computer Society Inc., 2003, pp.
191-200.

52. D. Hirsch, S. Uchitel, and D. Yankelevich, “Towards a Periodic
Table of Connectors”, Proceedings of the 3rd International Conference on
Coordination Languages and Models (COORDINATION’99), Lecture
Notes in Computer Science, vol. 1594, Springer, 1999, pp. 418-
424.

53. C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall
International, 1985.

54. G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions, Addison-Wesley
Professional, 2004.

55. M.N. Huhns and M.P. Singh, “Service-Oriented Computing: Key
Concepts and Principles”, IEEE Internet Computing, vol. 9, no. 1,
IEEE Computer Society Press, 2005, pp. 75-81.

56. IIBA, A Guide to Business Analysis Body of Knowledge version 1.6, 2006.
57. ISDL Home, Grizzle Distributions, http://isdl.ctit.utwente.nl/tools/

grizzle/
58. ISO/IEC, Information Technology – Open Distributed Processing – Reference

Model, International Standard ISO/IEC 10746.1-4, 1998.
59. ISO, Information Processing Systems – Open System Interconnection –

LOTOS – A Formal Description Technique based on the Temporal Ordering of
Observational Behaviour, ISO/IEC 8807, 1989.

60. M. Jackson, Software Requirements & Specifications – A Lexicon of Practice,
Principles and Prejudices. ACM Press, 1995.

61. O. Kath, A. Blazarenas, M. Born, K.-P. Eckert, M. Funabashi, and C.
Hirai, “Towards Executable Models: Transforming EDOC Behavior

258 REFERENCES

Models to CORBA and BPEL”, Proceedings of the 8th IEEE
International Enterprise Distributed Object Computing Conference (EDOC
2004), IEEE Computer Society Press, 2004, pp. 267-274.

62. M. Keil and E. Carmel, “Customer-Developer Links in Software
Development”, Communication of the ACM, vol. 38, no. 5, ACM, 1995,
pp. 33-44.

63. J. Koehler, R. Hauser, S. Kapoor., F.Y. Wu, and S. Kumaran, “A
Model Driven Transformation Method”, Proceedings of the 7th IEEE
International Enterprise Distributed Object Computing Conference (EDOC
2003), IEEE Computer Society Press, 2003, pp. 186-197.

64. B. Korherr and B. List, “Extending UML 2 Activity Diagram with
Business Process Goals and Performance Measures and the Mapping
to BPEL”, Proceedings of the 2nd International Workshop on Best Practices
of UML (BP-UML 2006), Lecture Notes on Computer Science, vol.
4231, 2006, pp. -18.

65. G. Kramler, E. Kapsammer, W. Retschitzegger, and G. Kappel,
“Towards Using UML 2 for Modelling Web Service Collaboration
Protocols”, Proceedings of the 1st International Conference on
Interoperability of Enterprise Software and Applications (INTEROP-ESA’05),
D. Konstantas, J.-P. Bourrières, M. Léonard, and N. Boudjlida
(eds.), Interoperability of Enterprise Software and Applications,
Springer, 2006, pp. 227-238.

66. V. Kulkarni and S. Reddy, “Separation of Concerns in Model-Driven
Development”, IEEE Software, vol. 20, no. 5, IEEE Computer Society
Press, 2003, pp. 64-69.

67. I. Kurtev, Adaptability of Model Transformation, PhD. thesis, University
of Twente, The Netherlands, 2005.

68. K.-K. Lau, L. Ling, V. Ukis, and P.V. Elizondo, “Composite
Connectors for Composing Software Components”, Revised selected
papers of the 6th International Symposium on Software Compositions (SC
2007), Lecture Notes on Computer Science, vol. 4829, Springer,
2007, pp. 266-280.

69. F. Leymann, Web Services Flow Language (WSFL 1.0), IBM Corp.,
2001.

70. J. Lind, “Patterns in Agent-Oriented Software Engineering”, Agent-
Oriented Software Engineering III, Revised papers and invited contributions of
the 3rd International Workshop on Agent-Oriented Software Engineering,
Lecture Notes on Computer Science, vol. 2585, Springer, 2002, pp.
47-58.

71. B. List and B. Korherr, “A UML2 Profile for Business Process
Modelling”, Proceedings of the Workshop on Metamodelling and Model
Driven Development, Lecture Notes on Computer Science, vol. 3770,
Springer, 2005, pp. 85-96.

 REFERENCES 259

72. D.C. Luckham and J. Vera, “An Event-Based Architectural
Definition Language”, IEEE Transactions on Software Engineering, vol.
21, no. 9, IEEE Computer Society Press, 1995, pp. 717-734.

73. J. Magee and J. Kramer, “Dynamic Structure in Software
Architecture”, ACM SIGSOFT Software Engineering Notes, vol. 21, no. 6,
ACM Press, 1996, pp. 3-14.

74. I. Manolescu, M. Brambilla, S. Ceri, S. Comai, and P. Fraternali,
“Model-Driven Design and Deployment of Service-Enabled Web
Applications”, ACM Transactions on Internet Technology, vol. 5, no. 3,
ACM Press, 2005, pp. 439-479.

75. R.P. McAfee and J. McMillan, “Auctions and Bidding”, Journal of
Economic Literature, vol. 25 no. 2, American Economic Association,
1987, pp. 699-738.

76. M. Mecella, F.P. Presicce, and B. Pernici, “Modeling E-service
Orchestration through Petri Nets”, Proceedings of the 3rd International
Workshop on Technologies for E-Services (TES 2002), Lecture Notes on
Computer Science, vol. 2444, Springer, 2002, pp. 109-134.

77. B. Medjahed, B. Benatallah, A. Bougouettaya, A.H.H. Ngu, and A.K.
Elmagarmid, “Business-to-Business Interactions: Issues and Enabling
Technologies”, The VLDB Journal, vol. 12, no. 1, Springer, 2003, pp.
59-85.

78. N.R. Mehta, N. Medvidovic, and S. Phadke, “Towards a Taxonomy
of Software Connectors”, Proceedings of the 22nd International
Conference on Software Engineering (ICSE 2000), ACM Press, 2000, pp.
178-187.

79. T. Mens and P. van Gorp, “A Taxonomy of Model Transformation”,
Proceedings of the International Workshop on Graph and Model
Transformation (GraMoT 2005), Electronic Notes in Theoretical
Computer Science, vol. 152, Elsevier, 2006, pp. 125-142.

80. Microsoft Corp., .NET Framework Conceptual Overview, http://msdn.
microsoft.com/en-us/library/zw4w595w.aspx

81. D.E. Millard, Y. Howard, E.-R. Jam, S. Chennupati, H.C. Davis, L.
Gilbert, and G.B. Wills, “FREMA Method for Describing Web
Services in a Service-Oriented Architecture”, Technical Report ECSTR-
IAM06-002, University of Southampton, UK, 2006.

82. R. Milner, A Calculus of Communicating Systems, Lecture Notes in
Computer Science, vol 92, Springer-Verlag, 1980.

83. M. Moriconi, X. Qian, and R.A. Riemenschneider, “Correct
Architecture Refinement”, IEEE Transactions on Software Engineering,
vol. 21, no. 4, IEEE Computer Society Press, 1995, pp. 356-372.

84. OASIS, Web Services Base Notification 1.3 (WS-BaseNotification), OASIS
Standard, 1 October 2006.

260 REFERENCES

85. OASIS, Web Services Brokered Notification 1.3 (WS-BrokeredNotification),
OASIS Standard, 1 October 2006.

86. OASIS, Web Services Business Process Execution Language version 2.0,
OASIS Standard, 11 April 2007.

87. OMG, Business Process Modeling Notation (BPMN) version 1.2, formal/
2009-01-03, 2009.

88. OMG. Business Process Modeling Notation (BPMN) FTF Beta 1 for version
2.0, dtc/2009-08-14, 2009.

89. OMG, Common Object Request Broker Architecture: Core Specification version
3.0.3, formal/04-03-12, 2004.

90. OMG, MDA Guide version 1.0.1, omg/2003-06-01, 2003.
91. OMG, Model Driven Architecture (MDA), ormsc/2001-07-01, 2001.
92. OMG, Service Oriented Architecture Modeling Language (SoaML) –

Specification for the UML Profile and Metamodel for Services (UPMS),
ptc/2009-04-01, 2009.

93. OMG, UML Profile for CORBA Specification version 1.0, formal/02-04-
01, 2002.

94. OMG, Unified Modelling Language Specification version 1.3, 2000.
95. OMG, Unified Modeling Language: Infrastructure version 2.1.1, formal/

07-02-03, 2007.
96. OMG, Unified Modeling Language: Superstructure version 2.1.1, formal/

2007-02-03, 2007.
97. Oracle Corp., Oracle BPEL Process Manager, http://www.oracle.com/

technology/bpel
98. B. Orriens, J. Yang, and M.P. Papazoglou, “Model Driven Service

Composition”, Proceedings of International Conference on Service Oriented
Computing (ICSOC 2003), Lecture Notes in Computer Science, vol.
2910, Springer, 2003, pp. 75-90.

99. M.P. Papazoglou, Web Services: Principle and Technology, Pearson
Education, 2008.

100. M.P. Papazoglou and D. Georgakopoulos, “Service-Oriented
Computing”, Communications of the ACM, vol. 46, no. 10, ACM
Press, 2003, pp. 25-28.

101. O. Patrascoiu, “Mapping EDOC to Web Services using YATL”,
Proceedings of the 8th IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2004), IEEE Computer Society, 2004,
pp. 286-297.

102. PayPal Inc., PayPal, http://www.paypal.com
103. C. Peltz, “Web Services Orchestration and Choreography”, IEEE

Computer, vol. 36, no. 8, IEEE Computer Society Press, 2003, pp.
46-52.

104. J.L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-
Hall, 1981.

 REFERENCES 261

105. S. Pokraev, Model-Driven Semantic Integration of Service-Oriented
Applications, Ph.D thesis, University of Twente, The Netherlands,
2009.

106. S. Pokraev, D.A.C. Quartel, M.W.A. Steen, A. Wombacher, and M.
Reichert, “Business Level Service-Oriented Enterprise Application
Integration”, Proceedings of the 3rd International Conference on
Interoperability for Enterprise Software and Applications (I-ESA 2007),
Springer, 2005, pp. 507-518.

107. D. Quartel, Action Relations. Basic Design Concepts for Behaviour Modelling
and Refinement, Ph.D. thesis, University of Twente, The Netherlands,
1998.

108. D. Quartel, R. Dijkman, and M. van Sinderen, “Methodological
Support for Service-Oriented Design with ISDL”, Proceedings of the
2nd International Conference on Service Oriented Computing (ICSOC 2004),
ACM Press, 2004, pp. 1-10.

109. D. Quartel, T. Dirgahayu, and M. van Sinderen, “Model-Driven
Design, Simulation and Implementation of Service Compositions in
COSMO”, International Journal of Business Process Integration and
Management, vol. 4, no.1, Inderscience, 2009, pp. 18-34.

110. D. Quartel, L. Ferreira Pires, and M. van Sinderen, “On
Architectural Support for Behaviour Refinement in Distributed
Systems Design”, Journal of Integrated Design and Process Science, vol. 6,
no. 1, Society for Design and Process Science, 2002, pp.1-30.

111. D.A.C. Quartel, L. Ferreira Pires, M.J. van Sinderen, H.M. Franken,
and C.A. Vissers, “On the Role of Basic Design Concepts in
Behaviour Structuring”, Computer Networks and ISDN Systems, vol. 29,
no. 4, Elsevier, 1997, pp. 413-436.

112. D.A.C. Quartel, S. Pokraev, T. Dirgahayu, R. Mantovaneli Pessoa,
M.W.A. Steen, and M. van Sinderen, “Model-Driven Development
of Mediation for Business Services using COSMO”, Enterprise
Information Systems, vol. 3, no. 3, Taylor & Francis, 2009, pp. 319-
345.

113. D.A.C. Quartel, M.W.A. Steen, S. Pokraev, and M.J. van Sinderen,
“COSMO: A Conceptual Framework for Service Modelling and
Refinement”, Information Systems Frontiers, vol. 9, no. 2-3, Springer,
2007, pp. 225-244.

114. M. Shaw, “Procedure Calls are the Assembly Language of Software
Interconnection: Connectors Deserve First-Class Status”, Selected
papers from the Workshop on Studies of Software Design, Lecture Notes in
Computer Science, vol. 1078, Springer, 1993, pp. 17-32.

115. M. Shaw, R. DeLine, D.V. Klein, T.L. Ross, D.M. Young, and G.
Zelesnik, “Abstractions for Software Architecture and Tools to

262 REFERENCES

Support Them”, IEEE Transactions on Software Engineering, vol. 21, no.
4, IEEE Computer Society Press, 1995, pp. 314-335.

116. M. Shaw, R. DeLine, and G. Zelesnik, “Abstraction and
Implementation for Architectural Connections”, Proceedings of the 3rd
International Conference on Configurable Distributed Systems (ICCDS’96),
1996, pp. 2-10.

117. D. Skogan, R. Grønmo, and I. Solheim, “Web Service Composition
in UML”, Proceedings of the 8th IEEE International Enterprise Distributed
Object Computing Conference (EDOC 2004), IEEE Computer Society
Press, 2004, pp. 47-57.

118. A. Solberg, D. Simmonds, R. Reddy, S. Ghosh, and R. France,
“Using Aspect Oriented Techniques to Support Separation of
Concerns in Model Driven Development”, Proceedings of the 29th
Annual International Computer Software and Applications Conference
(COMPSAC 2005), IEEE Computer Society Press, 2005, pp. 121-
126.

119. N. Soundarajan, “Refining Interactions in a Distributed System”,
Proceedings of the 1st International Workshop on Formal Approaches to
Agent-Based Systems (FAABS 2000), Lecture Notes in Computer
Science, vol. 1871, Springer, 2000, pp. 209-221.

120. T. Specht, J. Drawehn, M. Thranert, and S. Kuhne, “Modeling
Cooperative Business Processes and Transformation to a Service
Oriented Architecture”, Proceedings of the 7th IEEE International
Conference on E-Commerce Technology, IEEE Computer Society Press,
2005, pp. 249-256.

121. Sun Microsystems Inc., Java Platform, Enterprise Edition 5 (Java EE 5),
http://java.sun.com/javaee/technologies/javaee5.jsp

122. A. Sutcliffe, The Domain Theory: Patterns for Knowledge and Software
Reuse. Lawrence Erlbaum Associates, Inc., 2002.

123. SWSC, Semantic Web Service Challenge: Evaluating Semantic Web Services
Mediation, Choreography and Discovery, http://sws-challenge.org

124. S. Thatte, XLANG: Web Services for Business Process Design, Microsoft
Corp., 2001.

125. S. Thöne, R. Depke, and G. Engels, “Process-Oriented, Flexible
Composition of Web Services with UML”, Proceedings of the 3rd
International Joint Workshop on Conceptual Modeling Approaches for E-
Business (eCOMO 2002), Lecture Notes in Computer Science, vol.
2784, Springer, 2003, pp. 390-401.

126. E. Truyen, B.N. Jorgensen, W. Joosen, and P. Verbaeten, “On
Interaction Refinement in Middleware”, Proceedings of the 5th
International Workshop on Component-Oriented Programming (WCOP
2000), 2000, pp. 56-62.

 REFERENCES 263

127. M. Turner, D. Budgen, and P. Brereton, “Turning Software into a
Service”, IEEE Computer, vol. 36, no. 10, IEEE Computer Society
Press, 2003, pp. 38-44.

128. W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede, “Web
Service Composition Languages: Old Wine in New Bottles?”,
Proceedings of the 29th EUROMICRO Conference (EUROMICRO’03),
2003, pp. 298-305.

129. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and
A.P. Barros, “Workflow Patterns”, Distributed and Parallel Databases,
vol. 14, no. 3, Springer, 2003, pp. 5-51.

130. M. van Sinderen, On the Design of Application Protocols, Ph.D. thesis,
University of Twente, The Netherlands, 1995.

131. C.A. Vissers, L. Ferreira Pires, D.A.C. Quartel, and M.J. van
Sinderen, The Architectural Design of Distributed Systems, University of
Twente, The Netherlands, 2002.

132. W3C, Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C
Recommendation, 26 November 2008.

133. W3C, Web Services Architecture, W3C Working Group Note, 11
February 2004.

134. W3C, Web Services Architecture Usage Scenario, W3C Working Group
Note, 11 February 2004.

135. W3C, Web Services Choreography Description Language version 1.0, W3C
Candidate Recommendation, 9 November 2005.

136. W3C, Web Services Choreography Interfaces (WSCI) 1.0, W3C Note, 8
August 2002.

137. W3C, Web Services Conversation Language (WSCL) 1.0, W3C Note, 14
March 2002.

138. W3C, Web Services Description Language (WSDL) 1.1, W3C Note, 15
March 2001.

139. W3C, Web Services Description Language (WSDL) version 2.0 Part 0:
Primer, W3C Recommendation, 26 June 2007.

140. W3C, Web Services Polling (WS-Polling), W3C Member Submission, 26
October 2005.

141. W3C, XML Path Language (XPath) version 1.0, W3C
Recommendation, 16 November 1999.

142. W3C, XML Schema Part 0: Primer second edition, W3C
Recommendation, 28 October 2004.

143. S.A. White, “Using BPMN to Model a BPEL Process”, BPTrends, vol.
3, no. 3, Business Process Trends, 2005, pp. 1-18.

144. M.H. Williams, “Generating Structured Flow Diagrams: The Nature
of Unstructurness”, The Computer Journal, vol. 20, no. 1, British
Computer Society, 1977, pp. 45-50.

264 REFERENCES

145. J.M. Zaha, M. Dumas, A. ter Hofstede, A. Barros, and G. Decker,
"Service Interaction Modeling: Bridging Global and Local Views",
Proceedings of the 10th IEEE International EDOC Enterprise Computing
Conference (EDOC 2006), IEEE Computer Society Press, 2006, pp.
45-55.

146. J.M. Zaha, A. Barros, M. Dumas, and A. ter Hofstede, “Let’s Dance:
A Language for Service Behavior Modeling”, Proceedings of OTM 2006
Confederated International Conferences: CoopIS, DOA, GADA, and ODBASE,
Lecture Notes in Computer Science, vol. 4275, Springer, 2006, pp.
145-162.

B. Publications by the author

During the development of this thesis, the author has published various
parts of his work in the following papers (listed in reverse chronological
order):

– T. Dirgahayu, D. Quartel, and M. van Sinderen, “Interaction

Refinement in the Design of Business Collaborations”, Proceedings of the
2010 ACM Symposium on Applied Computing (SAC 2010), ACM, pp. 86-93,
22 - 26 March 2010, Sierre, Switzerland. ISBN: 978-1-60558-638-0.
Best paper award for the Engineering theme.

– T. Dirgahayu, D. Quartel, and M. van Sinderen, “Abstractions of
Interaction Mechanisms”, Proceedings of the 13th IEEE International EDOC
Enterprise Computing Conference (EDOC 2009), IEEE Computer Society,
pp. 173-182, 31 August - 4 September 2009, Auckland, New Zealand.
ISBN: 978-0-7695-3785-6, ISSN: 1541-7719.

– D.A.C. Quartel, S. Pokraev, T. Dirgahayu, R. Mantovanelli Pessoa,
M.W.A. Steen, and M. van Sinderen, “Model-Driven Development of
Mediation for Business Services Using COSMO”, Enterprise Information
Systems, vol. 3, no. 3, pp. 319-345, August 2009. ISSN: 1751-7583.

– D. Quartel, T. Dirgahayu, and M. van Sinderen, “Model-Driven Design,
Simulation and Implementation of Service Compositions in COSMO”,
International Journal of Business Process Integration and Management, vol. 4,
no. 1, pp. 18-34, 2009. ISSN: 1741-8763.

– D.A.C. Quartel, S. Pokraev, T. Dirgahayu, R. Mantovaneli Pessoa and
M. van Sinderen, “Model-driven Service Integration using the COSMO
Framework”, Semantic Web Services Challenge: Proceedings of the 2008
Workshops, Stanford Logical Group Technical Reports (LG-2009-01),
pp. 77-88, 26 October 2008, Karlsruhe, Germany.

– T. Dirgahayu, D. Quartel, and M. van Sinderen, “Transforming Internal
Activities of Business Process Models to Services Compositions”, Joint
Proceedings of IWUC, MDEIS and TCoB 2008 - 4th International Workshop on
Model-Driven Enterprise Information Systems, INSTICC Press, pp. 56-63,
12-13 June 2008, Barcelona, Spain. ISBN: 978-989-8111-49-4.

– T. Dirgahayu, D. Quartel, and M. van Sinderen, “An Abstract
Interaction Concept for Designing Interaction Behaviour of Service
Compositions”, Enterprise Interoperability III – Proceedings of the 4th

266 PUBLICATIONS BY THE AUTHOR

International Conference on Interoperability for Enterprise Software and
Applications (I-ESA '08), Springer, pp. 261-273, 25-28 March 2008,
Berlin, Germany. ISBN: 978-1-84800-220-3.

– T. Dirgahayu, D. Quartel, and M. van Sinderen, “Designing Interaction
Behaviour of Service-Oriented Enterprise Application Integrations”,
Proceedings of the 2008 ACM Symposium of Applied Computing (SAC 2008),
ACM, pp. 1048-1054, 16-20 March 2008, Fortaleza, Brazil. ISBN:
978-1-59593-753-7.

– R.M. Dijkman, T. Dirgahayu, and D.A.C. Quartel, “The Adequacy of
Languages for Representing Interaction Mechanisms”, Information Systems
Frontiers, vol. 9, no. 4, Springer, pp. 359-373, September 2007. ISSN:
1387-3326.

– T. Dirgahayu, D. Quartel, and M. van Sinderen, “Development of
Transformations from Business Process Models to Implementations by
Reuse”, Proceedings of MDEIS 2007 - 3rd International Workshop on Model-
Driven Enterprise Information Systems, INSTICC Press, pp. 41-50, 12 June
2007, Funchal, Portugal. ISBN: 978-989-8111-00-5.

– R.M. Dijkman, T. Dirgahayu, and D.A.C. Quartel, “Towards Advanced
Interaction Design Concepts”, Proceedings of the 10th IEEE International
Enterprise Distributed Object Computing Conference (EDOC'06), IEEE
Computer Society Press, pp. 331-344, 16-20 October 2006. Hong
Kong. ISBN: 0-7695-2558-X.

C. SIKS Dissertation series

1998
[1998-1] Johan van den Akker (CWI) DEGAS - An Active, Temporal Database of
Autonomous Objects
[1998-2] Floris Wiesman (UM) Information Retrieval by Graphically Browsing Meta-
Information
[1998-3] Ans Steuten (TUD) A Contribution to the Linguistic Analysis of Business
Conversations within the Language/Action Perspective
[1998-4] Dennis Breuker (UM) Memory versus Search in Games
[1998-5] E.W.Oskamp (RUL) Computerondersteuning bij Straftoemeting

1999
[1999-1] Mark Sloof (VU) Physiology of Quality Change Modelling; Automated
modelling of Quality Change of Agricultural Products
[1999-2] Rob Potharst (EUR) Classification using decision trees and neural nets
[1999-3] Don Beal (UM) The Nature of Minimax Search
[1999-4] Jacques Penders (UM) The practical Art of Moving Physical Objects
[1999-5] Aldo de Moor (KUB) Empowering Communities: A Method for the
Legitimate User-Driven Specification of Network Information Systems
[1999-6] Niek J.E. Wijngaards (VU) Re-design of compositional systems
[1999-7] David Spelt (UT) Verification support for object database design
[1999-8] Jacques H.J. Lenting (UM) Informed Gambling: Conception and Analysis of
a Multi-Agent Mechanism for Discrete Reallocation.

2000
[2000-1] Frank Niessink (VU) Perspectives on Improving Software Maintenance
[2000-2] Koen Holtman (TUE) Prototyping of CMS Storage Management
[2000-3] Carolien M.T. Metselaar (UVA) Sociaal-organisatorische gevolgen van
kennistechnologie; een procesbenadering en actorperspectief.
[2000-4] Geert de Haan (VU) ETAG, A Formal Model of Competence Knowledge for
User Interface Design
[2000-5] Ruud van der Pol (UM) Knowledge-based Query Formulation in Information
Retrieval.
[2000-6] Rogier van Eijk (UU) Programming Languages for Agent Communication
[2000-7] Niels Peek (UU) Decision-theoretic Planning of Clinical Patient
Management

268 SIKS DISSERTATION SERIES

[2000-8] Veerle Coup‚ (EUR) Sensitivity Analyis of Decision-Theoretic Networks
[2000-9] Florian Waas (CWI) Principles of Probabilistic Query Optimization
[2000-10] Niels Nes (CWI) Image Database Management System Design
Considerations, Algorithms and Architecture
[2000-11] Jonas Karlsson (CWI) Scalable Distributed Data Structures for Database
Management

2001
[2001-1] Silja Renooij (UU) Qualitative Approaches to Quantifying Probabilistic
Networks
[2001-2] Koen Hindriks (UU) Agent Programming Languages: Programming with
Mental Models
[2001-3] Maarten van Someren (UvA) Learning as problem solving
[2001-4] Evgueni Smirnov (UM) Conjunctive and Disjunctive Version Spaces with
Instance-Based Boundary Sets
[2001-5] Jacco van Ossenbruggen (VU) Processing Structured Hypermedia: A Matter
of Style
[2001-6] Martijn van Welie (VU) Task-based User Interface Design
[2001-7] Bastiaan Schonhage (VU) Diva: Architectural Perspectives on Information
Visualization
[2001-8] Pascal van Eck (VU) A Compositional Semantic Structure for Multi-Agent
Systems Dynamics.
[2001-9] Pieter Jan 't Hoen (RUL) Towards Distributed Development of Large
Object-Oriented Models, Views of Packages as Classes
[2001-10] Maarten Sierhuis (UvA) Modeling and Simulating Work Practice BRAHMS:
a multiagent modeling and simulation language for work practice analysis and design
[2001-11] Tom M. van Engers (VUA) Knowledge Management: The Role of Mental
Models in Business Systems Design

2002
[2002-01] Nico Lassing (VU) Architecture-Level Modifiability Analysis
[2002-02] Roelof van Zwol (UT) Modelling and searching web-based document
collections
[2002-03] Henk Ernst Blok (UT) Database Optimization Aspects for Information
Retrieval
[2002-04] Juan Roberto Castelo Valdueza (UU) The Discrete Acyclic Digraph Markov
Model in Data Mining
[2002-05] Radu Serban (VU) The Private Cyberspace Modeling Electronic
Environments inhabited by Privacy-concerned Agents
[2002-06] Laurens Mommers (UL) Applied legal epistemology; Building a knowledge-
based ontology of the legal domain
[2002-07] Peter Boncz (CWI) Monet: A Next-Generation DBMS Kernel For Query-
Intensive Applications

 SIKS DISSERTATION SERIES 269

[2002-08] Jaap Gordijn (VU) Value Based Requirements Engineering: Exploring
Innovative E-Commerce Ideas
[2002-09] Willem-Jan van den Heuvel(KUB) Integrating Modern Business
Applications with Objectified Legacy Systems
[2002-10] Brian Sheppard (UM) Towards Perfect Play of Scrabble
[2002-11] Wouter C.A. Wijngaards (VU) Agent Based Modelling of Dynamics:
Biological and Organisational Applications
[2002-12] Albrecht Schmidt (Uva) Processing XML in Database Systems
[2002-13] Hongjing Wu (TUE)A Reference Architecture for Adaptive Hypermedia
Applications
[2002-14] Wieke de Vries (UU) Agent Interaction: Abstract Approaches to Modelling,
Programming and Verifying Multi-Agent Systems
[2002-15] Rik Eshuis (UT) Semantics and Verification of UML Activity Diagrams for
Workflow Modelling
[2002-16] Pieter van Langen (VU) The Anatomy of Design: Foundations, Models and
Applications
[2002-17] Stefan Manegold (UVA) Understanding, Modeling, and Improving Main-
Memory Database Performance

2003
[2003-01] Heiner Stuckenschmidt (VU) Ontology-Based Information Sharing in
Weakly Structured Environments
[2003-02] Jan Broersen (VU) Modal Action Logics for Reasoning About Reactive
Systems
[2003-03] Martijn Schuemie (TUD) Human-Computer Interaction and Presence in
Virtual Reality Exposure Therapy
[2003-04] Milan Petkovic (UT) Content-Based Video Retrieval Supported by Database
Technology
[2003-05] Jos Lehmann (UVA) Causation in Artificial Intelligence and Law - A
modelling approach
[2003-06] Boris van Schooten (UT) Development and specification of virtual
environments
[2003-07] Machiel Jansen (UvA) Formal Explorations of Knowledge Intensive Tasks
[2003-08] Yongping Ran (UM) Repair Based Scheduling
[2003-09] Rens Kortmann (UM) The resolution of visually guided behaviour
[2003-10] Andreas Lincke (UvT) Electronic Business Negotiation: Some experimental
studies on the interaction between medium, innovation context and culture
[2003-11] Simon Keizer (UT) Reasoning under Uncertainty in Natural Language
Dialogue using Bayesian Networks
[2003-12] Roeland Ordelman (UT) Dutch speech recognition in multimedia
information retrieval
[2003-13] Jeroen Donkers (UM) Nosce Hostem - Searching with Opponent Models

270 SIKS DISSERTATION SERIES

[2003-14] Stijn Hoppenbrouwers (KUN) Freezing Language: Conceptualisation
Processes across ICT-Supported Organisations
[2003-15] Mathijs de Weerdt (TUD) Plan Merging in Multi-Agent Systems
[2003-16] Menzo Windhouwer (CWI) Feature Grammar Systems - Incremental
Maintenance of Indexes to Digital Media Warehouses
[2003-17] David Jansen (UT) Extensions of Statecharts with Probability, Time, and
Stochastic Timing
[2003-18] Levente Kocsis (UM) Learning Search Decisions

2004
[2004-01] Virginia Dignum (UU) A Model for Organizational Interaction: Based on
Agents, Founded in Logic
[2004-02] Lai Xu (UvT) Monitoring Multi-party Contracts for E-business
[2004-03] Perry Groot (VU) A Theoretical and Empirical Analysis of Approximation
in Symbolic Problem Solving
[2004-04] Chris van Aart (UVA) Organizational Principles for Multi-Agent
Architectures
[2004-05] Viara Popova (EUR) Knowledge discovery and monotonicity
[2004-06] Bart-Jan Hommes (TUD) The Evaluation of Business Process Modeling
Techniques
[2004-07] Elise Boltjes (UM) Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs,
een opstap naar abstract denken, vooral voor meisjes
[2004-08] Joop Verbeek(UM) Politie en de Nieuwe Internationale Informatiemarkt,
Grensregionale politi‰le gegevensuitwisseling en digitale expertise
[2004-09] Martin Caminada (VU) For the Sake of the Argument; explorations into
argument-based reasoning
[2004-10] Suzanne Kabel (UVA) Knowledge-rich indexing of learning-objects
[2004-11] Michel Klein (VU) Change Management for Distributed Ontologies
[2004-12] The Duy Bui (UT) Creating emotions and facial expressions for embodied
agents
[2004-13] Wojciech Jamroga (UT) Using Multiple Models of Reality: On Agents who
Know how to Play
[2004-14] Paul Harrenstein (UU) Logic in Conflict. Logical Explorations in Strategic
Equilibrium
[2004-15] Arno Knobbe (UU) Multi-Relational Data Mining
[2004-16] Federico Divina (VU) Hybrid Genetic Relational Search for Inductive
Learning
[2004-17] Mark Winands (UM) Informed Search in Complex Games
[2004-18] Vania Bessa Machado (UvA) Supporting the Construction of Qualitative
Knowledge Models
[2004-19] Thijs Westerveld (UT) Using generative probabilistic models for
multimedia retrieval

 SIKS DISSERTATION SERIES 271

[2004-20] Madelon Evers (Nyenrode) Learning from Design: facilitating
multidisciplinary design teams

2005
[2005-01] Floor Verdenius (UVA) Methodological Aspects of Designing Induction-
Based Applications
[2005-02] Erik van der Werf (UM)) AI techniques for the game of Go
[2005-03] Franc Grootjen (RUN) A Pragmatic Approach to the Conceptualisation of
Language
[2005-04] Nirvana Meratnia (UT) Towards Database Support for Moving Object data
[2005-05] Gabriel Infante-Lopez (UVA) Two-Level Probabilistic Grammars for
Natural Language Parsing
[2005-06] Pieter Spronck (UM) Adaptive Game AI
[2005-07] Flavius Frasincar (TUE) Hypermedia Presentation Generation for Semantic
Web Information Systems
[2005-08] Richard Vdovjak (TUE) A Model-driven Approach for Building Distributed
Ontology-based Web Applications
[2005-09] Jeen Broekstra (VU) Storage, Querying and Inferencing for Semantic Web
Languages
[2005-10] Anders Bouwer (UVA) Explaining Behaviour: Using Qualitative Simulation
in Interactive Learning Environments
[2005-11] Elth Ogston (VU) Agent Based Matchmaking and Clustering - A
Decentralized Approach to Search
[2005-12] Csaba Boer (EUR) Distributed Simulation in Industry
[2005-13] Fred Hamburg (UL) Een Computermodel voor het Ondersteunen van
Euthanasiebeslissingen
[2005-14] Borys Omelayenko (VU) Web-Service configuration on the Semantic Web;
Exploring how semantics meets pragmatics
[2005-15] Tibor Bosse (VU) Analysis of the Dynamics of Cognitive Processes
[2005-16] Joris Graaumans (UU) Usability of XML Query Languages
[2005-17] Boris Shishkov (TUD) Software Specification Based on Re-usable Business
Components
[2005-18] Danielle Sent (UU) Test-selection strategies for probabilistic networks
[2005-19] Michel van Dartel (UM) Situated Representation
[2005-20] Cristina Coteanu (UL) Cyber Consumer Law, State of the Art and
Perspectives
[2005-21] Wijnand Derks (UT) Improving Concurrency and Recovery in Database
Systems by Exploiting Application Semantics

2006
[2006-01] Samuil Angelov (TUE) Foundations of B2B Electronic Contracting
[2006-02] Cristina Chisalita (VU) Contextual issues in the design and use of
information technology in organizations

272 SIKS DISSERTATION SERIES

[2006-03] Noor Christoph (UVA) The role of metacognitive skills in learning to solve
problems
[2006-04] Marta Sabou (VU) Building Web Service Ontologies
[2006-05] Cees Pierik (UU) Validation Techniques for Object-Oriented Proof
Outlines
[2006-06] Ziv Baida (VU) Software-aided Service Bundling - Intelligent Methods &
Tools for Graphical Service Modeling
[2006-07] Marko Smiljanic (UT) XML schema matching -- balancing efficiency and
effectiveness by means of clustering
[2006-08] Eelco Herder (UT) Forward, Back and Home Again - Analyzing User
Behavior on the Web
[2006-09] Mohamed Wahdan (UM) Automatic Formulation of the Auditor's Opinion
[2006-10] Ronny Siebes (VU) Semantic Routing in Peer-to-Peer Systems
[2006-11] Joeri van Ruth (UT) Flattening Queries over Nested Data Types
[2006-12] Bert Bongers (VU) Interactivation - Towards an e-cology of people, our
technological environment, and the arts
[2006-13] Henk-Jan Lebbink (UU) Dialogue and Decision Games for Information
Exchanging Agents
[2006-14] Johan Hoorn (VU) Software Requirements: Update, Upgrade, Redesign -
towards a Theory of Requirements Change
[2006-15] Rainer Malik (UU) CONAN: Text Mining in the Biomedical Domain
[2006-16] Carsten Riggelsen (UU) Approximation Methods for Efficient Learning of
Bayesian Networks
[2006-17] Stacey Nagata (UU) User Assistance for Multitasking with Interruptions on
a Mobile Device
[2006-18] Valentin Zhizhkun (UVA) Graph transformation for Natural Language
Processing
[2006-19] Birna van Riemsdijk (UU) Cognitive Agent Programming: A Semantic
Approach
[2006-20] Marina Velikova (UvT) Monotone models for prediction in data mining
[2006-21] Bas van Gils (RUN) Aptness on the Web
[2006-22] Paul de Vrieze (RUN) Fundaments of Adaptive Personalisation
[2006-23] Ion Juvina (UU) Development of Cognitive Model for Navigating on the
Web
[2006-24] Laura Hollink (VU) Semantic Annotation for Retrieval of Visual Resources
[2006-25] Madalina Drugan (UU) Conditional log-likelihood MDL and Evolutionary
MCMC
[2006-26] Vojkan Mihajlovic (UT) Score Region Algebra: A Flexible Framework for
Structured Information Retrieval
[2006-27] Stefano Bocconi (CWI) Vox Populi: generating video documentaries from
semantically annotated media repositories
[2006-28] Borkur Sigurbjornsson (UVA) Focused Information Access using XML
Element Retrieval

 SIKS DISSERTATION SERIES 273

2007
[2007-01] Kees Leune (UvT) Access Control and Service-Oriented Architectures
[2007-02] Wouter Teepe (RUG) Reconciling Information Exchange and
Confidentiality: A Formal Approach
[2007-03] Peter Mika (VU) Social Networks and the Semantic Web
[2007-04] Jurriaan van Diggelen (UU) Achieving Semantic Interoperability in Multi-
agent Systems: a dialogue-based approach
[2007-05] Bart Schermer (UL) Software Agents, Surveillance, and the Right to Privacy:
a Legislative Framework for Agent-enabled Surveillance
[2007-06] Gilad Mishne (UVA) Applied Text Analytics for Blogs
[2007-07] Natasa Jovanovic' (UT) To Whom It May Concern - Addressee
Identification in Face-to-Face Meetings
[2007-08] Mark Hoogendoorn (VU) Modeling of Change in Multi-Agent
Organizations
[2007-09] David Mobach (VU) Agent-Based Mediated Service Negotiation
[2007-10] Huib Aldewereld (UU) Autonomy vs. Conformity: an Institutional
Perspective on Norms and Protocols
[2007-11] Natalia Stash (TUE) Incorporating Cognitive/Learning Styles in a General-
Purpose Adaptive Hypermedia System
[2007-12] Marcel van Gerven (RUN) Bayesian Networks for Clinical Decision
Support: A Rational Approach to Dynamic Decision-Making under Uncertainty
[2007-13] Rutger Rienks (UT) Meetings in Smart Environments; Implications of
Progressing Technology
[2007-14] Niek Bergboer (UM) Context-Based Image Analysis
[2007-15] Joyca Lacroix (UM) NIM: a Situated Computational Memory Model
[2007-16] Davide Grossi (UU) Designing Invisible Handcuffs. Formal investigations in
Institutions and Organizations for Multi-agent Systems
[2007-17] Theodore Charitos (UU) Reasoning with Dynamic Networks in Practice
[2007-18] Bart Orriens (UvT) On the development an management of adaptive
business collaborations
[2007-19] David Levy (UM) Intimate relationships with artificial partners
[2007-20] Slinger Jansen (UU) Customer Configuration Updating in a Software
Supply Network
[2007-21] Karianne Vermaas (UU) Fast diffusion and broadening use: A research on
residential adoption and usage of broadband internet in the Netherlands between 2001
and 2005
[2007-22] Zlatko Zlatev (UT) Goal-oriented design of value and process models from
patterns
[2007-23] Peter Barna (TUE) Specification of Application Logic in Web Information
Systems
[2007-24] Georgina Ramírez Camps (CWI) Structural Features in XML Retrieval

274 SIKS DISSERTATION SERIES

[2007-25] Joost Schalken (VU) Empirical Investigations in Software Process
Improvement

2008
[2008-01] Katalin Boer-Sorbán (EUR) Agent-Based Simulation of Financial Markets:
A modular, continuous-time approach
[2008-02] Alexei Sharpanskykh (VU) On Computer-Aided Methods for Modeling and
Analysis of Organizations
[2008-03] Vera Hollink (UVA) Optimizing hierarchical menus: a usage-based
approach
[2008-04] Ander de Keijzer (UT) Management of Uncertain Data - towards
unattended integration
[2008-05] Bela Mutschler (UT) Modeling and simulating causal dependencies on
process-aware information systems from a cost perspective
[2008-06] Arjen Hommersom (RUN) On the Application of Formal Methods to
Clinical Guidelines, an Artificial Intelligence Perspective
[2008-07] Peter van Rosmalen (OU) Supporting the tutor in the design and support of
adaptive e-learning
[2008-08] Janneke Bolt (UU) Bayesian Networks: Aspects of Approximate Inference
[2008-09] Christof van Nimwegen (UU) The paradox of the guided user: assistance
can be counter-effective
[2008-10] Wauter Bosma (UT) Discourse oriented summarization
[2008-11] Vera Kartseva (VU) Designing Controls for Network Organizations: A
Value-Based Approach
[2008-12] Jozsef Farkas (RUN) A Semiotically Oriented Cognitive Model of
Knowledge Representation
[2008-13] Caterina Carraciolo (UVA) Topic Driven Access to Scientific Handbooks
[2008-14] Arthur van Bunningen (UT) Context-Aware Querying; Better Answers with
Less Effort
[2008-15] Martijn van Otterlo (UT) The Logic of Adaptive Behavior: Knowledge
Representation and Algorithms for the Markov Decision Process Framework in First-
Order Domains.
[2008-16] Henriette van Vugt (VU) Embodied agents from a user's perspective
[2008-17] Martin Op 't Land (TUD) Applying Architecture and Ontology to the
Splitting and Allying of Enterprises
[2008-18] Guido de Croon (UM) Adaptive Active Vision
[2008-19] Henning Rode (UT) From Document to Entity Retrieval: Improving
Precision and Performance of Focused Text Search
[2008-20] Rex Arendsen (UVA) Geen bericht, goed bericht. Een onderzoek naar de
effecten van de introductie van elektronisch berichtenverkeer met de overheid op de
administratieve lasten van bedrijven.
[2008-21] Krisztian Balog (UVA) People Search in the Enterprise
[2008-22] Henk Koning (UU) Communication of IT-Architecture

 SIKS DISSERTATION SERIES 275

[2008-23] Stefan Visscher (UU) Bayesian network models for the management of
ventilator-associated pneumonia
[2008-24] Zharko Aleksovski (VU) Using background knowledge in ontology matching
[2008-25] Geert Jonker (UU) Efficient and Equitable Exchange in Air Traffic
Management Plan Repair using Spender-signed Currency
[2008-26] Marijn Huijbregts (UT) Segmentation, Diarization and Speech
Transcription: Surprise Data Unraveled
[2008-27] Hubert Vogten (OU) Design and Implementation Strategies for IMS
Learning Design
[2008-28] Ildiko Flesch (RUN) On the Use of Independence Relations in Bayesian
Networks
[2008-29] Dennis Reidsma (UT) Annotations and Subjective Machines - Of
Annotators, Embodied Agents, Users, and Other Humans
[2008-30] Wouter van Atteveldt (VU) Semantic Network Analysis: Techniques for
Extracting, Representing and Querying Media Content
[2008-31] Loes Braun (UM) Pro-Active Medical Information Retrieval
[2008-32] Trung H. Bui (UT) Toward Affective Dialogue Management using Partially
Observable Markov Decision Processes
[2008-33] Frank Terpstra (UVA) Scientific Workflow Design; theoretical and practical
issues
[2008-34] Jeroen de Knijf (UU) Studies in Frequent Tree Mining
[2008-35] Ben Torben Nielsen (UvT) Dendritic morphologies: function shapes
structure

2009
[2009-01] Rasa Jurgelenaite (RUN) Symmetric Causal Independence Models
[2009-02] Willem Robert van Hage (VU) Evaluating Ontology-Alignment Techniques
[2009-03] Hans Stol (UvT) A Framework for Evidence-based Policy Making Using IT
[2009-04] Josephine Nabukenya (RUN) Improving the Quality of Organisational
Policy Making using Collaboration Engineering
[2009-05] Sietse Overbeek (RUN) Bridging Supply and Demand for Knowledge
Intensive Tasks - Based on Knowledge, Cognition, and Quality
[2009-06] Muhammad Subianto (UU) Understanding Classification
[2009-07] Ronald Poppe (UT) Discriminative Vision-Based Recovery and Recognition
of Human Motion
[2009-08] Volker Nannen (VU) Evolutionary Agent-Based Policy Analysis in Dynamic
Environments
[2009-09] Benjamin Kanagwa (RUN) Design, Discovery and Construction of Service-
oriented Systems
[2009-10] Jan Wielemaker (UVA) Logic programming for knowledge-intensive
interactive applications
[2009-11] Alexander Boer (UVA) Legal Theory, Sources of Law & the Semantic Web

276 SIKS DISSERTATION SERIES

[2009-12] Peter Massuthe (TUE, Humboldt-Universitaet zu Berlin) Operating
Guidelines for Services
[2009-13] Steven de Jong (UM) Fairness in Multi-Agent Systems
[2009-14] Maksym Korotkiy (VU) From ontology-enabled services to service-enabled
ontologies (making ontologies work in e-science with ONTO-SOA)
[2009-15] Rinke Hoekstra (UVA) Ontology Representation - Design Patterns and
Ontologies that Make Sense
[2009-16] Fritz Reul (UvT) New Architectures in Computer Chess
[2009-17] Laurens van der Maaten (UvT) Feature Extraction from Visual Data
[2009-18] Fabian Groffen (CWI) Armada, An Evolving Database System
[2009-19] Valentin Robu (CWI) Modeling Preferences, Strategic Reasoning and
Collaboration in Agent-Mediated Electronic Markets
[2009-20] Bob van der Vecht (UU) Adjustable Autonomy: Controling Influences on
Decision Making
[2009-21] Stijn Vanderlooy (UM) Ranking and Reliable Classification
[2009-22] Pavel Serdyukov (UT) Search For Expertise: Going beyond direct evidence
[2009-23] Peter Hofgesang (VU) Modelling Web Usage in a Changing Environment
[2009-24] Annerieke Heuvelink (VUA) Cognitive Models for Training Simulations
[2009-25] Alex van Ballegooij (CWI) "RAM: Array Database Management through
Relational Mapping"
[2009-26] Fernando Koch (UU) An Agent-Based Model for the Development of
Intelligent Mobile Services
[2009-27] Christian Glahn (OU) Contextual Support of social Engagement and
Reflection on the Web
[2009-28] Sander Evers (UT) Sensor Data Management with Probabilistic Models
[2009-29] Stanislav Pokraev (UT) Model-Driven Semantic Integration of Service-
Oriented Applications
[2009-30] Marcin Zukowski (CWI) Balancing vectorized query execution with
bandwidth-optimized storage
[2009-31] Sofiya Katrenko (UVA) A Closer Look at Learning Relations from Text
[2009-32] Rik Farenhorst (VU) and Remco de Boer (VU) Architectural Knowledge
Management: Supporting Architects and Auditors
[2009-33] Khiet Truong (UT) How Does Real Affect Affect Affect Recognition In
Speech?
[2009-34] Inge van de Weerd (UU) Advancing in Software Product Management: An
Incremental Method Engineering Approach
[2009-35] Wouter Koelewijn (UL) Privacy en Politiegegevens; Over geautomatiseerde
normatieve informatie-uitwisseling
[2009-36] Marco Kalz (OUN) Placement Support for Learners in Learning Networks
[2009-37] Hendrik Drachsler (OUN) Navigation Support for Learners in Informal
Learning Networks
[2009-38] Riina Vuorikari (OU) Tags and self-organisation: a metadata ecology for
learning resources in a multilingual context

 SIKS DISSERTATION SERIES 277

[2009-39] Christian Stahl (TUE, Humboldt-Universitaet zu Berlin) Service
Substitution -- A Behavioral Approach Based on Petri Nets
[2009-40] Stephan Raaijmakers (UvT) Multinomial Language Learning: Investigations
into the Geometry of Language
[2009-41] Igor Berezhnyy (UvT) Digital Analysis of Paintings
[2009-42] Toine Bogers (UvT) Recommender Systems for Social Bookmarking
[2009-43] Virginia Nunes Leal Franqueira (UT) Finding Multi-step Attacks in
Computer Networks using Heuristic Search and Mobile Ambients
[2009-44] Roberto Santana Tapia (UT) Assessing Business-IT Alignment in
Networked Organizations
[2009-45] Jilles Vreeken (UU) Making Pattern Mining Useful
[2009-46] Loredana Afanasiev (UvA) Querying XML: Benchmarks and Recursion

2010
[2010-01] Matthijs van Leeuwen (UU) Patterns that Matter
[2010-02] Ingo Wassink (UT) Work flows in Life Science
[2010-03] Joost Geurts (CWI) A Document Engineering Model and Processing
Framework for Multimedia documents
[2010-04] Olga Kulyk (UT) Do You Know What I Know? Situational Awareness of
Co-located Teams in Multidisplay Environments
[2010-05] Claudia Hauff (UT) Predicting the Effectiveness of Queries and Retrieval
Systems
[2010-06] Sander Bakkes (UvT) Rapid Adaptation of Video Game AI
[2010-07] Wim Fikkert (UT) A Gesture interaction at a Distance
[2010-08] Krzysztof Siewicz (UL) Towards an Improved Regulatory Framework of
Free Software. Protecting user freedoms in a world of software communities and
eGovernments
[2010-09] Hugo Kielman (UL) A Politiele gegevensverwerking en Privacy, Naar een
effectieve waarborging
[2010-10] Rebecca Ong (UL) Mobile Communication and Protection of Children
[2010-11] Adriaan Ter Mors (TUD) The world according to MARP: Multi-Agent
Route Planning
[2010-12] Susan van den Braak (UU) Sensemaking software for crime analysis
[2010-13] Gianluigi Folino (RUN) High Performance Data Mining using Bio-inspired
techniques
[2010-14] Sander van Splunter (VU) Automated Web Service Reconfiguration
[2010-15] Lianne Bodenstaff (UT) Managing Dependency Relations in Inter-
Organizational Models
[2010-16] Sicco Verwer (TUD) Efficient Identification of Timed Automata, theory
and practice
[2010-17] Spyros Kotoulas (VU) Scalable Discovery of Networked Resources:
Algorithms, Infrastructure, Applications

278 SIKS DISSERTATION SERIES

[2010-18] Charlotte Gerritsen (VU) Caught in the Act: Investigating Crime by Agent-
Based Simulation
[2010-19] Henriette Cramer (UvA) People's Responses to Autonomous and Adaptive
Systems
[2010-20] Ivo Swartjes (UT) Whose Story Is It Anyway? How Improv Informs Agency
and Authorship of Emergent Narrative
[2010-21] Harold van Heerde (UT) Privacy-aware data management by means of data
degradation
[2010-22] Michiel Hildebrand (CWI) End-user Support for Access to Heterogeneous
Linked Data
[2010-23] Bas Steunebrink (UU) The Logical Structure of Emotions
[2010-24] Dmytro Tykhonov () Designing Generic and Efficient Negotiation Strategies
[2010-25] Zulfiqar Ali Memon (VU) Modelling Human-Awareness for Ambient
Agents: A Human Mindreading Perspective
[2010-26] Ying Zhang (CWI) XRPC: Efficient Distributed Query Processing on
Heterogeneous XQuery Engines
[2010-27] Marten Voulon (UL) Automatisch contracteren
[2010-28] Arne Koopman (UU) Characteristic Relational Patterns
[2010-29] Stratos Idreos(CWI) Database Cracking: Towards Auto-tuning Database
Kernels
[2010-30] Marieke van Erp (UvT) Accessing Natural History - Discoveries in data
cleaning, structuring, and retrieval
[2010-31] Victor de Boer (UVA) Ontology Enrichment from Heterogeneous Sources
on the Web
[2010-32] Marcel Hiel (UvT) An Adaptive Service Oriented Architecture:
Automatically solving Interoperability Problems
[2010-33] Robin Aly (UT) Modeling Representation Uncertainty in Concept-Based
Multimedia Retrieval
[2010-34] Teduh Dirgahayu (UT) Interaction Design in Service Compositions

